[1]王梓齐,刘长良,李海军.考虑输入变量时滞的NOx生成量动态建模[J].热力发电,2019,(01):68-72.[doi:10.19666/j.rlfd.201803128 ]
 WANG Ziqi,LIU Changliang,LI Haijun.Dynamic modeling of NOx production considering input variable time-delay[J].Thermal Power Generation,2019,(01):68-72.[doi:10.19666/j.rlfd.201803128 ]
点击复制

考虑输入变量时滞的NOx生成量动态建模

参考文献/References:

[1] 火电厂大气污染物排放标准: GB 13223—2011[S]. 北京: 中国环境科学出版社, 2011.
Emission standard of air pollutants for thermal power plants: GB 13223—2011[S]. Beijing: China Environ-mental Science Press, 2011.
[2] 张东辉, 庄烨, 朱润儒, 等. 燃煤烟气污染物超低排放技术及经济分析[J]. 电力建设, 2015, 36(5): 125-130.
ZHANG Donghui, ZHUANG Ye, ZHU Runru, et al. Ultra-low air pollutant control technologies for coal-fired flue gas and its economic analysis[J]. Electric Power Construction, 2015, 36(5): 125-130.
[3] 伏甲琪, 郭为民, 刘延泉, 等. SCR烟气脱硝系统Smith预估条件积分型滑模控制[J]. 热力发电, 2017, 46(4): 93-98.
FU Jiaqi, GUO Weimin, LIU Yanquan, et al. Conditional integral sliding mode control for SCR denitrification system based on Smith predictor[J]. Thermal Power Generation, 2017, 46(4): 93-98.
[4] FORTUNA L, GRAZIANI S, XIBILIA M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control Engineering Practice, 2005, 13(4): 499-508.
[5] GOVINDAN R B, RAETHJEN J, KOPPER F, et al. Estimation of time delay by coherence analysis[J]. Physica A Statistical Mechanics & Its Applications, 2004, 350(2): 277-295.
[6] LOU H, SU H, XIE L, et al. Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8510-8525.
[7] 李妍君, 熊伟丽, 徐保国. 一种带过程变量时滞估计的在线软测量建模方法[J]. 信息与控制, 2016, 45(6): 641-646.
LI Yanjun, XIONG Weili, XU Baoguo. An online soft-sensor modeling method including process variable time-delay estimation[J]. Information and Control, 2016, 45(6): 641-646.
[8] 阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11): 4497-4502.
RUAN Hongmei, TIAN Xuemin, WANG Ping. Dynamic soft sensor method based on joint mutual information[J]. Journal of Chemical Industry and Engineering (China), 2014, 65(11): 4497-4502.
[9] 王钧炎, 黄德先. 基于混合差分进化算法的软测量时延参数估计[J]. 化工学报, 2008, 59(8): 2058-2064.
WANG Junyan, HUANG Dexian. Time delay estimation of soft-sensor model based on hybrid differential evolution[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(8): 2058-2064.
[10] 管燕, 吴和成, 黄舜. 基于改进DEA的江苏省科技资源配置效率研究[J]. 科研管理, 2011, 32(2): 145-150.
GUAN Yan, WU Hecheng, HUANG Shun. The efficiency of science and technology resource allocation in Jiangsu Province based on an improved DEA model[J]. Science Research Management, 2011, 32(2): 145-150.
[11] 范德成, 李昊, 刘贇. 基于改进DEA——以复相关系数为基准的滞后期的我国产业结构演化效率评价[J]. 运筹与管理, 2016, 25(3): 195-203.
FAN Decheng, LI Hao, LIU Yun. A modified DEA model: with the lag periods based on multiple correlation coefficients to evaluate the efficiency of industriai structure evolution in china[J]. Operations Research and Management Science, 2016, 25(3): 195-203.
[12] 许童羽, 马艺铭, 曹英丽, 等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制, 2016, 44(22): 90-95.
XU Tongyu, MA Yiming, CAO Yingli, et al. Short term forecasting of photovoltaic output power based on principal component analysis and genetic optimization of BP neural network[J]. Power System Protection and Control, 2016, 44(22): 90-95.
[13] 王宁, 谢敏, 邓佳梁, 等. 基于支持向量机回归组合模型的中长期降温负荷预测[J]. 电力系统保护与控制, 2016, 44(3): 92-97.
WANG Ning, XIE Min, DENG Jialiang, et al. Mid-long term temperature-lowering load forecasting based on combination of support vector machine and multiple regression[J]. Power System Protection and Control, 2016, 44(3): 92-97.
[14] MAO J, ZHANG J, YUE Y, et al. Adaptive-tree- structure- based fuzzy inference system[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 1-12.
[15] ZHANG W, MAO J. Robust intelligent modeling for giant magnetostrictive actuators with rate-dependent hysteresis[J]. International Journal of Intelligent Com- puting & Cybernetics, 2012, 5(4): 500-514.
[16] ZHANG W, ZHANG Y, SUN Y, et al. Condition monitoring of limestone and soft sensing model of SO2 emissions in a circulating fluidized bed boiler[J]. Energy & Fuels, 2016, 30(4): 3519-3528.
[17] ZHANG W, ZHANG Y, BAI X, et al. A robust fuzzy tree method with outlier detection for combustion models and optimization[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 158: 130-137.
[18] 吕游, 刘吉臻, 杨婷婷, 等. [J]. 仪器仪表学报, 2013, 34(11): 2418-2424.
LV You, LIU Jizhen, YANG Tingting, et al. NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument, 2013, 34(11): 2418-2424.

相似文献/References:

[1]叶常勇.脱硝改造对锅炉运行的影响[J].热力发电,2012,(11):9.
 YE Changyong.INFLUENCE OF NITRIFICATION SYSTEM MODIFICATION ON BOILER OPERATION[J].Thermal Power Generation,2012,(01):9.
[2]武宝会,崔利.火电厂SCR烟气脱硝控制方式及其优化[J].热力发电,2013,(10):116.
 WU Baohui,CUI Li.SCR flue gas denitrification control and optimization in thermal power plants[J].Thermal Power Generation,2013,(01):116.
[3]张发捷,孔凡海,卞子君.SCR脱硝催化剂硫酸钙失活及再生试验[J].热力发电,2017,(6):88.
 ZHANG Fajie,KONG Fanhai,BIAN Zijun.Experimental study on SCR catalyst: deactivation by calcium sulfate and catalyst regeneration[J].Thermal Power Generation,2017,(01):88.
[4]张劲松,孙 捷,张发捷,等.烟气成分及SCR脱硝系统运行特性 对烟羽形成的影响[J].热力发电,2017,(12):111.
 ZHANG Jinsong,SUN Jie,ZHANG Fajie,et al.Effects of flue gas components and operation performance of SCR system on formation of smoke plumes[J].Thermal Power Generation,2017,(01):111.
[5]王乐乐,何 川,王 凯,等.SCR脱硝催化剂低负荷运行评估技术研究与应用[J].热力发电,2018,(10):24.[doi:10.19666/j.rlfd.201802046]
 WANG Lele,HE Chuan,WANG Kai,et al.Research and application of low-load operation evaluation technology for SCR catalysts[J].Thermal Power Generation,2018,(01):24.[doi:10.19666/j.rlfd.201802046]

备注/Memo

王梓齐(1995—),男,硕士研究生,主要研究方向为热力系统的数据驱动建模,wangziqincepu@163.com。

更新日期/Last Update: 2018-12-28