[1]丁续达,金秀章,张 扬.基于最小二乘支持向量机的改进型在线NOx预测模型[J].热力发电,2019,(01):61-67.[doi:10.19666/j.rlfd.201803023 ]
 DING Xuda,JIN Xiuzhang,ZHANG Yang.An improved online NOx prediction model based on LSSVM[J].Thermal Power Generation,2019,(01):61-67.[doi:10.19666/j.rlfd.201803023 ]
点击复制

基于最小二乘支持向量机的改进型在线NOx预测模型

参考文献/References:

[1] SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement: a review[J]. Science of the Total Environment, 2010, 408(19): 3976-3989.
[2] 解然, 杨昆, 石峰. 推动我国环保标准“走出去”的思考与建议—以火电行业为例[J]. 环境保护, 2017, 45(5): 71-74.
XIE Ran, YANG Kun, SHI Feng. Consideration and suggestion on the global strategies of China’s environmental standards: a case study of the thermal power industry[J]. Environmental Protection, 2017, 45: 71-74.
[3] KORPELA T, KUMPULAINEN P, MAJANNE Y, et al. Indirect NOx mathContainer Loading Mathjax, emission monitoring in natural gas fired boilers[J]. Control Engineering Practice, 2017, 65: 11-25.
[4] KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814.
[5] LV Y, YANG T, LIU J. An adaptive least squares support vector machine model with a novel update for NOx emission prediction[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 145: 103-113.
[6] GRBIC R, SLISKOVIC D, KADLEC P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models[J]. Computers & Chemical Engineering, 2013, 58: 84-97.
[7] SLISKOVIC D, GRBIC R, HOCENSKI Z. Methods for plant data-based process modeling in soft-sensor development[J]. Automatika, 2012, 52: 306-318.
[8] SLISKOVIC D, GRBIC R, HOCENSKI Z. Adaptive estimation of difficult-to-measure process variables[J]. Automatika, 2013, 55: 166-177.
[9] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 85-86.
[10] SUYKENS J, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Process Lett 1999, 9: 293-300.
[11] ZHAO H B, RU Z L, CHANG X, et al. Reliability analysis of tunnel using least square support vector machine[J]. Tunneling and Underground Space Tech- nology, 2014, 41: 14-23.
[12] YU L, CHEN H, WANG S, et al. Evolving least squares support vector machines for stock market trend mining [J]. IEEE Transaction on Evolutionary Computation, 2009, 13: 87-102.
[13] ZHENG H B, LIAO R J, GRZYBOWSKI S, et al. Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimisation[J]. Electric Power Applications Iet, 2011, 5(9): 691-696.
[14] YARVEICY H, MOGHADDAM A K, GHIASI M M. Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model[J]. Journal of Natural Gas Science & Engineering, 2014, 20(2): 414-421.
[15] 张英堂, 马超, 李志宁, 等. 基于快速留一交叉验证的核极限学习机在线建模[J]. 上海交通大学学报, 2014, 48(5): 641-646.
ZHANG Yingtang, MA Chao, LI Zhining, et al. Online modeling of kernel extreme leaning machine based on fast leave-on-out cross-validation[J]. Journal of Shanghai Jiao Tong University, 2014, 48(5): 641-646.
[16] 方必武, 刘涤尘, 王波, 等. 基于小波变换和改进萤火虫算法优化LSSVM的短期风速预测[J]. 电力系统保护与控制, 2016, 44(8): 37-43.
FANG Biwu, LIU Dichen, WANG Bo, et al. Short-term wind speed forecasting based on WD-CFA-LSSVM model[J]. Power System Protection and Control, 2016, 44(8): 37-43.

相似文献/References:

[1]王宏志,陈 帅,侍洪波.基于最小二乘支持向量机和PSO算法的电厂烟气含氧量软测量[J].热力发电,2008,(03):35.
[2]巨林仓,李 磊,赵 强.基于遗传神经网络的锅炉入炉煤质软测量研究[J].热力发电,2011,(03):24.
 JU Lincang,LI Lei,ZHAO Qiang.STUDY ON SOFT[CD*2]MEASUREMENT OF QUALITY FOR FURNACE-ENTERING COAL BASED ON GENETIC NEURAL NETWORK[J].Thermal Power Generation,2011,(01):24.
[3]司刚全,曹 晖,王靖程,等.基于复合式神经网络的火电厂筒式钢球磨煤机负荷软测量[J].热力发电,2007,(05):35.
[4]陈金楷,夏季,谭鹏,等.结合相空间重构和ELM的磨煤机振动软测量[J].热力发电,2015,(03):42.
 CHEN Jinkai,XIA Ji,TAN Peng,et al.Phase space reconstruction and ELM based soft measurement for vibration of a mill with multiple parameters and coal types[J].Thermal Power Generation,2015,(01):42.
[5]王建国,林乐平.粒子群算法与径向神经网络相结合的凝汽器真空预测模型[J].热力发电,2015,(10):72.
 WANG Jianguo,LIN Leping.A vacuum value prediction method for steam condensers using RBF neural network optimized by particle swarm algorithm[J].Thermal Power Generation,2015,(01):72.
[6]郝晓辉,刘鑫屏,边防,等.基于卡尔曼滤波的燃煤发热量动态软测量方法[J].热力发电,2016,(10):77.
 HAO Xiaohui,LIU Xinping,BIAN Fang,et al.Dynamic soft measurement method for coal calorific value based on Calman filter[J].Thermal Power Generation,2016,(01):77.
[7]白建云,朱竹军,张培华.基于BP神经网络的循环流化床锅炉生成NOx质量浓度在线软测量[J].热力发电,2016,(12):78.
 BAI Jianyun,ZHU Zhujun,ZHANG Peihua.Online soft measurement of NOx mass concentration for circulating fluidized bed boiler based on BP neural network[J].Thermal Power Generation,2016,(01):78.
[8]李建强,赵凯,牛成林,等.基于GASVM的电站锅炉烟气含氧量软测量模型[J].热力发电,2017,(4):63.
 LI Jianqiang,ZHAO Kai,NIU Chenglin,et al.GA-SVM-based soft-sensor model for oxygen content in flue gas of utility boilers[J].Thermal Power Generation,2017,(01):63.
[9]孟令虎,刘鑫屏.双进双出钢球磨煤机制粉系统煤粉流量软测量[J].热力发电,2018,(2):97.[doi:10.19666/j.rlfd.201705037 ]
 MENG Linghu,LIU Xinping.Soft-sensing of pulverized coal mass flow rate in a double-input and double-output ball mill pulverizing system[J].Thermal Power Generation,2018,(01):97.[doi:10.19666/j.rlfd.201705037 ]
[10]丁续达,刘 潇,金秀章.基于压缩感知最小二乘支持向量机的NOx软测量模型[J].热力发电,2018,(3):76.[doi:10.19666/j.rlfd.201808139 ]
 DING Xuda,LIU Xiao,JIN Xiuzhang.A soft sensor model for NOx concentration based on CS-LSSVM[J].Thermal Power Generation,2018,(01):76.[doi:10.19666/j.rlfd.201808139 ]

备注/Memo

丁续达(1994—),男,硕士研究生,主要研究方向为工业机器学习与数据挖掘,williamding@icloud.com。

更新日期/Last Update: 2018-12-28