[1]马红和,周 璐,马素霞,等.煤粉燃烧过程中H2S生成机理研究进展[J].热力发电,2019,(01):1-5.[doi:10.19666/j.rlfd.201803057 ]
 MA Honghe,ZHOU Lu,MA Suxia,et al.Progress in mechanism of H2S formation during pulverized coal combustion[J].Thermal Power Generation,2019,(01):1-5.[doi:10.19666/j.rlfd.201803057 ]
点击复制

煤粉燃烧过程中H2S生成机理研究进展

参考文献/References:

[1] WANG J, FAN W, LI Y, et al. The effect of air staged combustion on NOx emissions in dried lignite com- bustion[J]. Energy, 2012, 37(1): 725-736.
[2] SUNG Y, LEE S, KIM C, et al. Synergistic effect of co-firing woody biomass with coal on NOx reduction and burnout during air-staged combustion[J]. Experimental Thermal and Fluid Science, 2016, 71: 114-125.
[3] ZHANG D, YANI S. Sulphur transformation during pyrolysis of an Austrilian lignite[J]. Proceedings of the Combustion Institute, 2011, 33: 1747-1753.
[4] FAN W, LIN Z, LI Y, et al. Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology[J]. Applied Energy, 2010, 87(8): 2737-2745.
[5] KUNG C. Further understanding of furnace wall corrosion in coal-fired boilers[J]. Corrosion, 2014, 70(7): 749-763.
[6] KUNG C. High-temperature corrosion mechanisms for selected iron and nickel-based alloys exposed to sulfur and chlorine-containing environments[J]. Corrosion, 2015, 71(4): 483-501.
[7] SHIRAI H, IKEDA M, ARAMAKI H. Characteristics of hydrogen sulfide formation in pulverized coal com- bustion[J]. Fuel, 2013, 114(6): 114-119.
[8] TSUJI H, TANNO K, NAKAJIMA A, et al. Hydrogen sulfide characteristics of pulverized coal combustion- evaluation of blended combustion of two bituminous coals[J]. Fuel, 2015, 158: 523-529.
[9] ZHANG Z, LI Z, CAI N. Formation of reductive and corrosive gases during air-staged combustion of blends of anthracite/sub-bituminous coals[J]. Energy & Fuels, 2016, 30(5): 4353-4362.
[10] ZHANG B, REN Z, SHI S, et al. Numerical analysis of gasification and emission characteristics of a two-stage entrained flow gasifier[J]. Chemical Engineering Sci- ence, 2016, 152: 227-238.
[11] FRIGGE L J, ELSERAFI G, STR?HLE J, et al. Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere[J]. Energy & Fuels, 2016, 30(9): 7713-7720.
[12] ABI?N M, CEBRI?N M, ?NGELA M, et al. CS2 and COS conversion under different combustion conditions[J]. Combustion & Flame, 2015, 162(5): 2119-2127.
[13] ZHANG Z, CHEN D, LI Z, et al. Development of sulfur release and reaction model for computational fluid dynamic modeling in sub-bituminous coal combustion [J]. Energy & Fuels, 2017, 31: 1383-1398.
[14] MA H, ZHOU L, MA S, et al. Reaction mechanism for sulfur species during pulverized coal combustion[J]. Energy & Fuels, 2018, 32(3): 3958-3966.
[15] STR?HLE J, CHEN X, ZORBACH I, et al. Validation of a detailed reaction mechanism for sulfur species in coal combustion[J]. Combustion Science & Technology, 2014, 186(4/5): 540-551.
[16] 魏小林, 韩小海, Uwe Schnell, 等. 煤粉燃烧中NOx和SOx生成的详细反应机理模拟[J]. 力学学报, 2008, 40(6): 760-768.
WEI Xiaolin, HAN Xiaohai, SCHNELL U, et al. Modelling of the NOx and SOx formation in pulverized coal combustion with detailed reaction mechanism[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 760-768.
[17] 郭啸峰, 魏小林, 李森. C/H/O/N/S/Cl/K/Na元素的详细反应机理的简化与验证[J]. 燃烧科学与技术, 2013, 19(1): 21-30.
GUO Xiaofeng, WEI Xiaolin, LI Sen. Reduction and verification of detailed reaction mechanism containing C/H/O/N/S/Cl/K/ Na elements[J]. Journal of Combustion Science and Technology, 2013, 19(1): 21-30.
[18] GIM?NEZ-L?PEZ J, MART?NEZ M, MILLERA A, et al. SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions[J]. Combustion and Flame, 2011, 158: 48-56.
[19] SELIM H, IBRAHIM S, SHOAIBI A, et al. Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames[J]. Applied Energy, 2014, 113: 1134-1140.
[20] RASMUSSEN C L, GLARBORG P, MARSHALL P. Mechanisms of radical removal by SO2[J]. Proceedings of the Combustion Institute, 2007, 31: 339-347.
[21] BOHNSTEIN M, LANGEN J, FRIGGE L, et al. Com- parison of CFD simulation with measurement of gaseous sulfur species concentrations in a pulverized coal fired 1 MWth furnace [J]. Energy & Fuels, 2016, 30: 9836-9849.
[22] IBRAHIM S, SHOAIBI A A, GUPTA A K. Role of toluene in hydrogen sulfide combustion under Claus condition[J]. Applied Energy, 2013, 112(112): 60-66.
[23] ABI?N M, MILLERA ?, BILBAO R, et al. Impact of SO2 on the formation of soot from ethylene pyrolysis[J]. Fuel, 2015, 159: 550-558.
[24] 周璐, 马红和, 马素霞, 等. 多孔壁风耦合空气分级的煤粉燃烧炉: 201510685579.4[P]. 2017-07-25.
ZHOU Lu, MA Honghe, MA Suxia, et al. A kind of porous wall air coupling with air staging combustion furnace for pulverized coal: 201510685579.4[P]. 2017-07-25.
[25] 马红和, 周璐, 范江, 等. 多孔壁风耦合空气分级的煤粉燃烧系统: 201510685385.4[P]. 2017-07-18.
MA Honghe, ZHOU Lu, FAN Jiang, et al. A kind of porous wall air coupling with air staging combustion system for pulverized coal: 201510685385.4[P]. 2017-07-18.
[26] 马红和, 周璐, 马素霞, 等. 防结焦防高温腐蚀的锅炉水冷壁保护装置: 201410148685.4[P]. 2016-04-27.
MA Honghe, ZHOU Lu, MA Suxia, et al. A kind of protection device for boiler water wall by preventing high-temperature corrosion and coking: 201410148685.4 [P]. 2016-04-27.
[27] 马红和, 周璐, 马素霞, 等. 多孔壁风耦合空气分级的燃烧技术[J]. 现代化工, 2015, 35(2): 143-145.
MA Honghe, ZHOU Lu, MA Suxia, et al. Progress in porous wall-air coupling with air-staged combustion technology[J]. Modern Chemical Industry, 2015, 35(2): 143-145.
[28] MA H, ZHOU L, MA S, et al. Design of porous wall air coupling with air staged furnace for preventing high temperature corrosion and reducing NOx emissions [J]. Applied Thermal Engineering, 2017, 124: 865-870.
[29] MA H, ZHOU L, MA S, et al. Impact of the multi-hole wall air coupling with air staged on NOx emission during pulverized coal combustion[J]. Energy & Fuels, 2018, 32(2): 1464-1473.
(责任编辑 马昕红)

相似文献/References:

[1]薛 宁,姚 伟.煤燃烧反应动力学参数的测定方法[J].热力发电,2011,(01):23.
 XUE Ning,YAO Wei.METHOD FOR DETERMINING DYNAMIC PARAMETERS IN REACTION OF COAL COMBUSTION[J].Thermal Power Generation,2011,(01):23.
[2]薛 宁,姚 伟.煤燃烧反应动力学参数的测定方法[J].热力发电,2011,(01):23.
 XUE Ning,YAO Wei.METHOD FOR DETERMINING DYNAMIC PARAMETERS IN REACTION OF COAL COMBUSTION[J].Thermal Power Generation,2011,(01):23.
[3]赵京,黄镇宇,程军,等.工业废弃物对煤粉燃烧的催化研究[J].热力发电,2011,(08):25.
 ZHAO Jing,HUANG Zhenyu,CHENG Jun,et al.STUDY ON CATALYSITIC EFFECT OF INDUSTRIAL WASTE UPON PULVERIZED COAL COMBUSTION[J].Thermal Power Generation,2011,(01):25.
[4]袁 颖,姚 伟,相大光,等.高海拔对煤粉燃烧炉膛的影响[J].热力发电,2000,(04):0.
[5]金 晶,李瑞阳,陈占军,等.煤粉粒度对煤粉燃烧NOx排放特性影响的试验研究[J].热力发电,2004,(09):0.
[6]唐家毅,卢啸风,刘汉周,等.国外低Nox煤粉燃烧器的研究进展及发展趋势[J].热力发电,2008,(02):13.
[7]钟金鸣,周永刚,赵 虹.基于环境成本的磨煤机运行经济性[J].热力发电,2007,(01):35.
[8]焦克新,张建良,邢相栋,等.生物质焦促进煤粉燃烧动力学分析[J].热力发电,2013,(10):70.
 JIAO Kexin,ZHANG Jianliang,XING Xiangdong,et al.Study on combustion kinetics of coal promoted by biomass char[J].Thermal Power Generation,2013,(01):70.
[9]王春波,乔木森,邵欢.高温低氧气氛煤粉燃烧NO排放实验研究[J].热力发电,2015,(05):64.
 WANG Chunbo,QIAO Musen,SHAO Huan.Experimental study on NO emission during coal combustion at high temperature and low oxygen atmosphere[J].Thermal Power Generation,2015,(01):64.
[10]郑善凯,周月桂,曾柱楷,等.高温低氧气氛下煤粉颗粒燃烧特性实验[J].热力发电,2018,(9):41.[doi:10.19666/j.rlfd.201711148 ]
 ZHENG Shankai,ZHOU Yuegui,ZENG Zhukai,et al.Experimental research on combustion characteristics of pulverized coal particles in high temperature and low oxygen content environments[J].Thermal Power Generation,2018,(01):41.[doi:10.19666/j.rlfd.201711148 ]

备注/Memo

马红和(1985—),男,副教授,主要研究方向为电站锅炉高温腐蚀防治技术,ma-honghe@163.com。

更新日期/Last Update: 2018-12-28