[1]王定帮,雷 鸣,余福胜,等.燃煤机组SO3迁移规律及排放特性试验[J].热力发电,2018,(11):96-101.[doi:10.19666/j.rlfd.201803074]
 WANG Dingbang,LEI Ming,YU Fusheng,et al.SO3 migration and emission characteristics of coal-fired power units[J].Thermal Power Generation,2018,(11):96-101.[doi:10.19666/j.rlfd.201803074]
点击复制

燃煤机组SO3迁移规律及排放特性试验

参考文献/References:

[1] 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17.
MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17.
[2] 姚燕, 王丽丽, 孙凡海, 等. SCR脱硝系统蜂窝式催化剂性能评估及寿命管理[J]. 热力发电, 2016, 45(11): 114-119.
YAO Yan, WANG Lili, SUN Fanhai, et al. Performance evaluation and lifetime management of honeycomb SCR catalyst in coal-fired plant[J]. Thermal Power Generation, 2016, 45(11): 114-119.
[3] 谢天, 李杨, 周元祥, 等. 一种基于烟气中SO2浓度计算锅炉烟气酸露点的方法[J]. 热力发电, 2013, 42(12): 118-134.
XIE Tian, LI Yang, ZHOU Yuanxiang, et al. A SO2 concentration based calculation method for acid dew point of flue gas[J]. Thermal Power Generation, 2013, 42(12): 118-134.
[4] 陆军, 刘永强, 周飞, 等. 高硫煤机组低低温省煤器SO3协同脱除试验研究[J]. 热力发电, 2016, 45(12): 30-37.
LU Jun, LIU Yongqiang, ZHOU Fei, et al. Experimental research on simultaneous removal of SO3 by low-low temperature economizer in units firing high-sulfur coal[J]. Thermal Power Generation, 2016, 45(12): 30-37.
[5] 程宏鸽, 程雪山, 马彦斌, 等. 燃煤烟气中SO3的产生与转化及其抑制对策探讨[J]. 发电与空调, 2012(2): 1-4.
CHENG Hongge, CHENG Xueshan, MA Yanbin, et al. Some discussion about SO3’s generation, transformation and its inhibiting methods in coal-fired flue gas[J]. Power Generation & Air Condition, 2012(2): 1-4.
[6] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222.
[7] 上海环境保护局, 上海标准化管理委员会. 大气污染物综合排放标准: DB 31/933—2015[S]. 上海: 上海标准出版社, 2015.
Shanghai Standardization Management Committee, Shanghai Environmental Protection Bureau. Integrate emission standards of air pollutants: DB 31/933—2015[S]. Shanghai: Standards Press of China, 2015.
[8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 燃煤烟气脱硫设备性能测试方法: GB/T 21508—2008[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Performance test method for coal-fired flue gas desulphurization equipment: GB/T 21508—2008[S]. Beijing: Standards Press of China, 2008.
[9] 国家能源局. 石灰石-石膏湿法烟气脱硫装置性能验收试验规范: DL/T 998—2016[S]. 2016.
National Energy Administration. Performance test code for wet limestone gypsum flue gas desulphurization: DL/T 998—2016[S]. 2016.
[10] 环境保护部, 国家质量监督检验检疫总局. 火电厂大气污染物排放标准: GB 13223—2011[S]. 北京: 中国环境科学出版社, 2011.
Ministry of Environmental Protection, State Administration of Quality Supervision, Inspection and Quarantine. Emission standard of air pollutants for thermal power plants: GB 13223—2011[S]. Beijing: China Environmental Press, 2011.
[11] SVACHULA J, ALEMANY L J, FERLAZZO N. et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb deNOxing catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32: 828-834.
[12] SCHW?MMLE T, BERTSCHE F, HARTUNG A. Influence of geometrical parameters of honeycomb commercial SCR-deNOx-catalysts on deNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 222(15): 274-281.
[13] 史伟伟. SCR脱硝催化剂再生浸渍及其SO2氧化控制[D]. 广州: 华南理工大学, 2013: 35.
SHI Weiwei. Impregnation regeneration and SO2 oxidation control of the SCR denitration catalysts[D]. Guangzhou: South China University of Technology, 2013: 35.
[14] 纪培栋. SCR催化剂SO2氧化机理及调控机制研究[D]. 杭州: 浙江大学, 2016: 29.
JI Peidong. Research of SO2 oxidation over SCR catalyst and regulatory mechanism[D]. Hangzhou: Zhejiang University, 2016: 29.
[15] HARDMAN R, STACY R, DISMUKES E. Estimating sulfuric acid aerosol emissions from coal-fired power plants[R]. Washington: US Department of Energy-FETC, 1998: 1-11.
[16] KISHI T, TKAGI M, INABA T, et al. Prediction of deactivation and regeneration of de NOx catalyst using simple reaction model-2nd report: Modeling for predicting catalyst regeneration and its application[J]. Journal of the Marine Engineering Society in Japan, 2011, 46(1): 115-120.
[17] DENE C, HIMES R. Continuous measurement tech- nologies for SO3 and H2SO4 in coal-fired power plants[R]. California, EPRI, 2004: 1-84.
[18] 刘宏丽, 靳智平, 卫国, 等. 1 025 t/h循环流化床锅炉深度脱硫方式选择研究[J]. 热力发电, 2009, 38(3): 5-9.
LIU Hongli, JIN Zhiping, WEI Guo, et al. Study on selecting deep desulphurization mode for 1 025 t/h CFB boiler[J]. Thermal Power Generation. 2009, 38(3): 5-9.
[19] 张绪辉. 低低温电除尘器对细颗粒物及三氧化硫的协同脱除研究[D]. 北京: 清华大学, 2015: 30.
ZHANG Xuhui. Studies on synergetic removal of fine particulates and SO3 by an extra cold-side electrostatic precipitator[D]. Beijing: Tsinghua University, 2015: 30.
[20] 熊丹柳, 邓修. 液膜法烟气脱硫试验研究: Ⅱ. 促进传递机理与数学模型[J]. 华东理工大学学报: 自然科学版, 1998(1): 1-6.
XIONG Danliu, DENG Xiu. A study of flue gas desulfurization by contained liquid membrane method II. Transport mechanism and mathematical model[J]. Journal of East China University of Science and Technology: Natural Science Edition, 1998(1): 1-6.
(责任编辑 杨嘉蕾)

相似文献/References:

[1]匡国强,徐党旗.选择性催化还原(SCR)脱硝装置对锅炉结构的影响[J].热力发电,2006,(10):0.
[2]林海波,游春桃,周 波,等.超超临界2×1 036 MW机组SCR脱硝装置氨蒸发器的设计[J].热力发电,2011,(03):65.
 LIN Haibo,YOU Chuntao,ZHOU Bo,et al.DESIGN OF AMMONIA EVAPORATOR FOR SCR DENITRIFICATION SYSTEM OF ULTRA[CDF*2]SUPERCRITICAL 2×1 036 MW UNITS[J].Thermal Power Generation,2011,(11):65.
[3]姚明宇,张广才,聂剑平.高效燃煤机组关键技术研究进展[J].热力发电,2012,(08):1.
 YAO Mingyu,ZHANG Guangcai,NIE Jianping.KEY TECHNOLOGY OF ADVANCED HIGHEFFICIENCY COALFIRED POWER STATION[J].Thermal Power Generation,2012,(11):1.
[4]丁剑鹰.单元机组停机不停炉技术的应用[J].热力发电,2005,(08):0.
[5]李卫华.提高燃煤机组调频调峰性能的综合控制技术[J].热力发电,2014,(11):6.
 LI Weihua.Integrated control technology for improving PFC and AGC performance of coal-fired units:research and application[J].Thermal Power Generation,2014,(11):6.
[6]薛云灿,沙伟,蔡昌春,等.主蒸汽参数对煤耗率影响的计算模型比较[J].热力发电,2015,(03):76.
 XUE Yuncan,SHA Wei,CAI Changchun,et al.Influence of main steam parameters on coal consumption rates:calculation model comparison[J].Thermal Power Generation,2015,(11):76.
[7]章斐然,周克毅,徐奇,等.燃煤机组低负荷运行SCR烟气脱硝系统应对措施[J].热力发电,2016,(07):78.
 ZHANG Feiran,ZHOU Keyi,XU Qi,et al.Countermeasures for SCR denitration system of coal-fired unit during low-load operation[J].Thermal Power Generation,2016,(11):78.
[8]宋景慧,刘桂才,廖艳芬,等.燃煤机组锅炉低温烟气余热利用节能效益分析[J].热力发电,2015,(09):57.
 SONG Jinghui,LIU Guicai,LIAO Yanfen,et al.Energy-saving analysis for heat recovery from low-temperature flue gas in coal-fired units[J].Thermal Power Generation,2015,(11):57.
[9]崔立明,孟丽霞,袁 红.超低排放改造及其对供电成本的影响[J].热力发电,2017,(6):119.
 CUI Liming,MENG Lixia,YUAN Hong.Ultra-low emission reform and its influence on the plant’s electricity supply cost[J].Thermal Power Generation,2017,(11):119.
[10]杨勇平,吴殿法,王宁玲.基于组合权重优劣解距离法的火电机组性能综合评价[J].热力发电,2016,(02):10.
 YANG Yongping,WU Dianfa,WANG Ningling.Comprehensive evaluation for large scale coal-fired power units based on combined weight and TOPSIS method[J].Thermal Power Generation,2016,(11):10.

备注/Memo

王定帮(1987—),男,硕士,工程师,主要研究方向为燃煤烟气污染物的防治,wangdingbang@tpri.com.cn。

更新日期/Last Update: 2018-10-25