[1]高 杰,蔡 晋,乔晓磊,等.矿井乏风对锅炉燃烧特性影响推力轴承对汽轮机径向振动的耦合分析[J].热力发电,2018,(10):120-126.[doi:10.19666/j.rlfd.201711155]
 GAO Jie,CAI Jin,QIAO Xiaolei,et al.Effect of mine ventilation air methane on combustion characteristics of a coal- fired boiler[J].Thermal Power Generation,2018,(10):120-126.[doi:10.19666/j.rlfd.201711155]
点击复制

矿井乏风对锅炉燃烧特性影响推力轴承对汽轮机径向振动的耦合分析()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年10期
页码:
120-126
栏目:
发电技术论坛
出版日期:
2018-09-28

文章信息/Info

Title:
Effect of mine ventilation air methane on combustion characteristics of a coal- fired boiler
作者:
高 杰蔡 晋乔晓磊金 燕
太原理工大学电气与动力工程学院,山西 太原 030024
Author(s):
GAO Jie CAI Jin QIAO Xiaolei JIN Yan
College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
矿井乏风甲烷四角切圆锅炉燃烧特性NOx排放数值模拟
分类号:
TK16
DOI:
10.19666/j.rlfd.201711155
文献标志码:
A
摘要:
对某2 027 t/h四角切圆燃煤锅炉采用矿井乏风作为一次风和二次风的燃烧工况进行数值模拟,在验证模型可行性的基础上,研究了乏风中甲烷体积分数对炉膛温度以及NOx排放的影响。结果表明:随着乏风中甲烷体积分数的增加,炉膛内燃烧区平均温度最大增加53 K;炉膛中氧体积分数和NO质量浓度及煤粉燃尽率随着乏风中甲烷体积分数的升高而降低,而CO变化趋势相反;炉膛出口NO平均质量浓度从388.21 mg/m3降低至318.88 mg/m3,降低幅度达到17.80%。使用矿井乏风作为锅炉一次风和二次风能够有效降低NOx的排放。

参考文献/References:

[1] 张学延. 汽轮发电机组振动诊断[M]. 北京: 中国电力出版社, 2008: 37-41.
ZHANG Xueyan. Vibration diagnosis of turbo-generator units[M]. Beijing: China Electric Power Press, 2008: 37-41.
[2] 何国安, 张学延, 张卫军. 汽轮发电机组轴系振动研究进展及趋势[J]. 热力发电,2016, 45(11): 1-4.
HE Guoan, ZHANG Xueyan, ZHANG Weijun. Research status and development trends of turbo-generator shaft system vibration[J]. Thermal Power Generation, 2006, 45(11): 1-4.
[3] JIANG X, WANG J, FANG J. Thermal elastohydro-dynamic lubrication analysis of tilting pad thrust bearings[J]. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 2011, 225(2): 51-57.
[4] 赵永韬. 金斯伯里平衡式推力轴承结构特点和推力间隙的测量方法[J]. 热力发电, 2002, 31(1): 67.
ZHAO Yongtao. Structure characteristics and clearance measurement method for Kingsbury balance thrust bearing[J]. Thermal Power Generation, 2002, 31(1): 67.
[5] 于晓东, 陆怀民, 郭秀荣, 等. 扇形推力轴瓦润滑性能的数值分析[J]. 润滑与密封, 2007(1): 123-125.
YU Xiaodong, LU Huaimin, GUO Xiurong, et al. Numerical analysis of lubricating characteristics of sector thrust bearing pad[J]. Lubrication Engineering, 2007(1): 123-125.
[6] 谢澄, 周轶喆. 阿尔斯通公司600 MW机组汽轮机轴向位移异常分析及处理[J]. 热力发电, 2007, 36(12): 59-61.
XIE Cheng, ZHOU Yizhe. Analysis of abnormal axial displacement in steam turbine of 600 MW unit made by Alstom corporation and handling thereof[J]. Thermal Power Generation, 2007, 36(12): 59-61.
[7] 陈志澜, 袁小阳, 王海林, 等. 推力轴承瓦面形面对润滑性能影响的研究[J]. 摩擦学学报, 2003, 23(1): 56-59.
CHEN Zhilan, YUAN Xiaoyang, WANG Hailin, et al. The influence of thrust bearing pad face shape on lubrication performance[J]. Tribology, 2003, 23(1): 56-59.
[8] 郅刚锁, 马希直, 朱均. 推力轴承油膜温度场的可视化研究[J]. 重型机械, 2003(3): 11-14.
ZHI Gangsuo, MA Xizhi, ZHU Jun. Study of the virtual oil film for thrust bearings[J]. Heavy Machinery, 2003(3): 11-14.
[9] WODTKE M, FILLON M, SCHUBERT A. Study of the influence of heat convection coefficient on predicted performance of a large tilting-pad thrust bearing[J]. Journal of Tribology, 2013, 135(2): 1-11.
[10] 李忠, 秦大同. 可倾瓦推力轴承系统的稳定性和失稳转速分析[J]. 机械科学与技术, 2008, 27(2): 277-280.
LI Zhong, QIN Datong. Analysis stability and unstable rotational speed of tilt pad thrust bearing system[J]. Mechanical Science and Technology, 2008, 27(2): 277-280.
[11] 邱家俊, 段文会. 推力轴承油膜刚度和阻尼的解析解[J]. 大电机技术, 2002(2): 5-8.
QIU Jiajun, DUAN Wenhui. The analytical solution to oil film stillness and damping of thrust bearing[J]. Large Electric Machine and Hydraulic Turbine, 2002(2): 5-8.
[12] 李忠, 袁小阳, 朱均. 可倾瓦推力轴承的线性和非线性动特性研究[J]. 中国机械工程, 2000, 11(5): 560-562.
LI Zhong, YUAN Xiaoyang, ZHU Jun. A study of linear and non-linear dynamic performance for tilting-pad thrust bearing[J]. China Mechanical Engineering, 2000, 11(5): 560-562.
[13] MITTWOLLEN N, HEGEL T, GLIENICKE J. Effects of hydrodynamic thrust bearings on lateral shaft vibration[J]. Journal of Tribology, 1991, 113(4): 811-817.
[14] 陈渭. 流体动力润滑推力轴承动特性及其对转子横向振动状态影响的研究[D]. 西安: 西安交通大学, 1991: 114-117.
CHEN Wei. Study on the dynamic characteristics of hydrodynamic lubrication thrust bearing and its influence on the rotor lateral vibration[D]. Xi’an: Xi’an Jiaotong University, 1991:114-117.
[15] 姜培林, 虞烈. 推力轴承对轴承-转子系统的耦合作用研究[J]. 应用力学学报, 1996, 13(4): 46-52.
JIANG Peilin, YU Lie. The research of coupling influence of thrust bearing on the rotor system[J]. Journal of Applied Mechanics, 1996, 13(4): 46-52.
(责任编辑 刘永强)
[1] 袁彦霞. 煤矿乏风(通风瓦斯)排放及利用现状[J]. 能源与节能, 2012(11): 55-57.
YUAN Yanxia. Emission and utilization of coal mine VAM (vent gas) [J]. Energy and Energy Conservation, 2012(11): 55-57.
[2] 黄格省, 于天学, 李雪静. 国内外煤层气利用现状及技术途径分析[J]. 石化技术与应用, 2010, 28(4): 341-346.
HUANG Gesheng, YU Tianxue, LI Xuejing. Utilization status and technologies of global coal-bed gas[J]. Petrochemical Technology & Application, 2010, 28(4): 341-346.
[3] 马新涛, 刘朋. 浅析煤层气浓缩技术研究及发展[J]. 陕西煤炭, 2010, 29(5): 56-58.
MA Xintao, LIU Peng. Analysis on concentration technology of coal-bed methane and its application[J]. Shaanxi Coal, 2010, 29(5): 56-58.
[4] 高增丽, 高振强, 刘永启, 等. 矿井乏风瓦斯治理利用现状与发展[J]. 冶金能源, 2010, 29(5): 43-46.
GAO Zengli, GAO Zhenqiang, LIU Yongqi, et al. Actuality and development of harness and utilization of coal mine ventilation air methane[J]. Energy for Metallurgical Industry, 2010, 29(5): 43-46.
[5] 李桂芳. 浅谈煤矿电力节能管理工作重点[J]. 科技资讯, 2010(35): 101.
LI Guifang. Discussion on energy saving management of coal mine[J]. Science & Technology Information, 2010, (35): 101.
[6] 鞠胤红, 曾祥昊, 王梦纯. HG-420/13.7-YM3型锅炉热风改乏气送粉方式探讨[J]. 黑龙江科学, 2017, 8(4): 118-119.
JU Yinhong, ZENG Xianghao, WANG Mengchun. Discussion on the mode transformation from hot-air to exhaust-deliver-powder of HG-420/13-7-YM3 boiler[J]. Heilongjiang Science, 2017, 8(4): 118-119.
[7] CAROTHERS P, DEO M. Technical and economic assessment: mitigation of methane emissions from coal mine ventilation air[R]. Coal Bed Methane Outreach Program. Washington: US Environmental Protection Agency, 2000.
[8] 赵坚行. 燃烧的数值模拟[M]. 北京: 科学出版社, 2002: 1-32.
ZHAO Jianxing. Numerical simulation on combustion[J]. Beijing: Science Press, 2002: 1-32.
[9] 沈跃云, 高小涛. 600 MW超临界机组墙式燃烧锅炉运行特性的数值模拟计算研究[J]. 华东电力, 2014, 42(7): 1460-1464.
SHEN Yueyun, GAO Xiaotao. Numerical simulation of waii-fired boiler operation characteristics in 600 MW supercritical unit[J]. East China Electric Power, 2014, 42(7): 1460-1464.
[10] 丁历威, 李凤瑞. Fluent软件模拟计算煤粉燃烧的机理及其模型实现的方式[J]. 浙江电力, 2010, 29(11): 31-34.
DING Liwei, LI Fengrui. Mechanism and model realization of pulverized coal combustion simulation and calculation with Fluent [J]. Zhejiang Electric Power, 2010, 29(11): 31-34.
[11] 于勇. Fluent入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008: 188-191.
YU Yong. Introduction and advanced tutorials of Fluent[M]. Beijing: Beijing Institute of Technology Press, 2008: 188-191.
[12] HILL S C, SMOOT L D. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy & Combustion Science, 2000, 26(4): 417-458.
[13] 王蕾. 600 MW对冲燃煤锅炉降低NOx排放的数值模拟[D]. 北京: 北京交通大学, 2008: 7-10.
WANG Lei. Numerical simulation of NOx emission reduction for 600 MW opposed coal-fired boiler[D]. Beijing: Beijing Jiaotong University, 2008: 7-10.
[14] D?EZ L I, CORT?S C, PALLAR?S J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation[J]. Fuel, 2008, 87(7): 1259-1269.
[15] FANG Q, MUSA A A B, WEI Y, et al. Numerical simulation of multifuel combustion in a 200 MW tangentially fired utility boiler[J]. Energy & Fuels, 2012, 26(1): 313-323.

相似文献/References:

[1]曹玉春,魏新利,吴金星,等.甲烷对冲扩散火焰Nox生成动力学特性研究[J].热力发电,2007,(06):41.
[2]张 强,杨祖照,李文彦,等.甲烷催化燃烧研究进展[J].热力发电,2007,(08):1.
[3]崔永安,高 杰,徐 樑,等.某600 MW机组锅炉矿井乏风/煤粉耦合燃烧特性数值模拟[J].热力发电,2017,(7):33.
 CUI Yongan,GAO Jie,XU Liang,et al.Numerical simulation on mixed combustion characteristics of coal-bed methane and pulverized coal in a 600 MW unit boiler[J].Thermal Power Generation,2017,(10):33.

备注/Memo

备注/Memo:
高杰(1990—),男,硕士研究生,主要研究方向为燃烧工程技术,610198419@qq.com。
更新日期/Last Update: 2018-09-29