[1]马玉华,邢长清,徐君诏,等.深度调峰负荷时亚临界自然循环锅炉水循环安全计算与分析[J].热力发电,2018,(10):108-114.[doi:10.19666/j.rlfd.201712172]
 MA Yuhua,XING Changqing,XU Junzhao,et al.Safety calculation and analysis for thermal-hydraulic circulation of a subcritical natural circulation boiler at severe peak load regulation[J].Thermal Power Generation,2018,(10):108-114.[doi:10.19666/j.rlfd.201712172]
点击复制

深度调峰负荷时亚临界自然循环锅炉水循环安全计算与分析()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年10期
页码:
108-114
栏目:
发电技术论坛
出版日期:
2018-09-28

文章信息/Info

Title:
Safety calculation and analysis for thermal-hydraulic circulation of a subcritical natural circulation boiler at severe peak load regulation
作者:
马玉华1邢长清1徐君诏2聂 鑫34张广才4柳宏刚4杨 冬3
1.华能国际电力股份有限公司丹东电厂,辽宁 丹东 118300; 2.华能新疆能源开发有限公司,新疆 乌鲁木齐 830017; 3.西安交通大学动力工程多相流国家重点实验室,陕西 西安 710049; 4.西安热工研究院有限公司,陕西 西安 710054
Author(s):
MA Yuhua1 XING Changqing1 XU Junzhao2 NIE Xin34 ZHANG Guangcai4 LIU Honggang4 YANG Dong3
1. Huaneng Power International Inc. Dandong Power Plant, Dandong 118300, China; 2. Huaneng Xinjiang Energy Development Co., Ltd., Urumqi 830017, China; 3. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 71004
关键词:
深度调峰自然循环锅炉水动力计算水冷壁循环倍率不稳定性停滞
分类号:
TK224.2
DOI:
10.19666/j.rlfd.201712172
文献标志码:
A
摘要:
为探寻提升火电机组灵活性的技术路径,提升风能等新能源的消纳能力,针对华能国际电力股份有限公司丹东电厂亚临界350 MW机组自然循环锅炉在深度调峰负荷下的水循环安全计算与分析,根据锅炉水冷壁的结构特点,将水冷壁划分为由流量回路、压力节点和连接管组成的流动网络系统。根据质量守恒、动量守恒和能量守恒方程,建立了亚临界自然循环锅炉水冷壁流量和壁温计算的数学模型。采用对非线性流量平衡和压降平衡方程组进行直接求解的方法,计算得到了深度调峰工况的水动力结果。计算表明:深度调峰25%THA负荷下的循环倍率均大于界限循环倍率,可以满足锅炉安全运行,并有足够的安全裕度;流量和循环流速较合理,四面墙各墙回路流量分配均匀,金属温度能够满足材料强度和抗氧化的要求;在此基础上25%THA负荷不会发生流动不稳定性,且在正常热负荷下不会发生停滞现象。

参考文献/References:

[1] 张广才, 周科, 鲁芬, 等. 燃煤机组深度调峰技术探讨[J]. 热力发电, 2017, 46(9): 17-23.
ZHANG Guangcai, ZHOU Ke, LU Fen, et al. Discussions on deep peaking technology of coal-fired power plants[J]. Thermal Power Generation, 2017, 46(9): 17-23.
[2] 顾煜炯, 徐婧, 李倩倩, 等. 燃煤发电机组调峰能力模糊综合评估方法[J]. 热力发电, 2017, 46(2): 15-21.
GU Yujiong, XU Jing, LI Qianqian, et al. Fuzzy comprehensive evaluation method for peak shaving capability of coal fired power units[J]. Thermal Power Generation, 2017, 46(2): 15-21.
[3] 邹兰青. 规模风电并网条件下火电机组深度调峰多角度经济性分析[D]. 北京: 华北电力大学, 2017: 1-5.
ZOU Lanqing. Multi-angle economic analysis for deep peak regulation of thermal units with large scale wind power connected power system[D]. Beijing: Beijing: North China Electric Power University, 2017: 1-5.
[4] 张美伦. 某电厂300 MW机组深度调峰安全性分析[J]. 黑龙江科技信息, 2016(3): 14-16.
ZHANG Meilun. Safety analysis for a 300 MW unit of a power plant at severe peak load regulation[J]. Scientific and Technological Information of Heilongjiang, 2016(3): 14-16.
[5] 王凯, 黄葆华, 司派友. 火电机组调峰裕度的影响因素研究[J]. 节能技术, 2012, 30(1): 52-54.
WANG Kai, HUANG Baohua, SI Paiyou. Research on influencing factors of peak-regulation margin in power plant units[J]. Energy Conservation Technology, 2012, 30(1): 52-54.
[6] 俞谷颖, 朱右广. 电站锅炉水动力研究[J]. 动力工程学报, 2011, 31(8): 590-597.
YU Guying, ZHU Youguang. Study on hydrodynamic performance of power plant boilers[J]. Power Engineering, 2011, 31(8): 590-597.
[7] 易凯. 自然循环热水锅炉水动力不确定因素分析[D]. 哈尔滨: 哈尔滨工业大学, 2012: 2-15.
YI Kai. Uncertain factor analysis of the natural circulation of hot water boiler hydrodynamic[D]. Harbin: Harbin Institute of Technology, 2012: 2-15.
[8] 杨冬, 于辉, 华洪渊, 等. 超(超)临界垂直管圈锅炉水冷壁流量分配及壁温计算[J]. 中国电机工程学报, 2008, 28(17): 32-38.
YANG Dong, YU Hui, HUA Hongyuan, et al. Numerical computation on the mass flow rate profile and metal temperature in vertical water wall of an ultra supercritical boiler[J]. Proceedings of the CSEE, 2008, 28(17): 32-38.
[9] 邢振中. 火力发电机组深度调峰技术研究[D]. 北京: 华北电力大学, 2013: 1-5.
XING Zhenzhong. Technology research on depth peak load cycling of thermal power generator units[D]. Beijing: North China Electric Power University, 2013: 1-5.
[10] 张世宏, 刘正强, 聂鑫, 等. 超超临界1 000 MW机组锅炉水冷壁壁温偏差计算分析及对策[J]. 热力发电, 2017, 46(11): 44-49.
ZHANG Shihong , LIU Zhengqiang, NIE Xin, et al. Water wall temperature deviation analysis and countermeasures of a 1 000 MW ultra-supercritical boiler[J]. Thermal Power Generation, 2017, 46(11): 44-49.
[11] WANG L, YANG D, SHEN Z, et al. Thermal-hydraulic calculation and analysis of a 600 ?MW supercritical circulating fluidized bed boiler with annular furnace[J]. Applied Thermal Engineering, 2016, 95(130): 42-52.
[12] PAN J, WU G, YANG D, et al. Thermal-hydraulic calculation and analysis on water wall system of 600 MW supercritical CFB boiler[J]. Applied Thermal Engi- neering, 2015, 82: 225-236.
[13] PAN J, YANG D, CHEN G, et al. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux[J]. Applied Thermal Engineering, 2012, 32: 41-48.
[14] 电站锅炉水动力计算方法: JB/Z 201—1983[S]. 上海: 上海发电设备成套研究所, 1983.
The national standard of the boiler hydrodynamics calculation: JB/Z 201—1983[S]. Shanghai: Shanghai Power Equipment Packaged Design Research Institute, 1983.
[15] WANG W, YANG D, LIU W, et al. Experimental investigation on two-phase flow instabilities of ultra supercritical pressure boiler with spirally water wall tubes[J]. Experimental Thermal & Fluid Science, 2016, 81: 304-313.
[16] 茆凯源, 聂鑫, 谢海燕, 等. 超超临界1 000 MW二次再热机组锅炉水动力及流动不稳定性计算分析[J]. 热力发电, 2017, 46(8): 36-41.
MAO Kaiyuan, NIE Xin, XIE Haiyan, et al. Computational analysis on hydrodynamic characteristics and flow instability of an ultra supercritical 1 000 MW double-reheat unit boiler[J]. Thermal Power Generation, 2017, 46(8): 36-41.
[17] 张莉. 电站锅炉小负荷下的水动力循环模拟与可靠性研究[D]. 大连: 大连理工大学, 2006: 35-44.
ZHANG Li. Simulation and study on safety of hydro-power under low-load for utility boiler[D]. Dalian: Dalian University of Technology, 2006: 35-44.
[18] 茅义军, 何利军, 张一帆, 等. 高参数超超临界二次再热机组锅炉垂直管圈水冷壁水动力特性分析[J]. 热力发电, 2017, 46(12): 105-110.
MAO Yijun, HE Lijun, ZHANG Yifan, et al. Thermal hydrodynamic performance of vertically-upward water wall in an ultra-supercritical double-reheat boiler with high working parameters[J]. Thermal Power Generation, 2017, 46(12): 105-110.
(责任编辑 马昕红)

相似文献/References:

[1]董信光,孙 健,孔庆雨,等.超临界350 MW机组直流锅炉深度调峰能力试验[J].热力发电,2018,(7):105.[doi:10.19666/j.rlfd.201710095]
 DONG Xinguang,SUN Jian,KONG Qingyu,et al.Experimental study on depth peak-load regulation capacity of once-through boiler for a supercritical 350 MW unit[J].Thermal Power Generation,2018,(10):105.[doi:10.19666/j.rlfd.201710095]
[2]张广才,周 科,鲁 芬,等.燃煤机组深度调峰技术探讨[J].热力发电,2017,(9):17.
 ZHANG Guangcai,ZHOU Ke,LU Fen,et al.Discussions on deep peaking technology of coal-fired power plants[J].Thermal Power Generation,2017,(10):17.
[3]王耀函,曾德良,陈 凯.基于图解法的含储热罐供热机组特性分析[J].热力发电,2017,(11):57.
 WANG Yaohan,ZENG Deliang,CHEN Kai.Characteristic analysis for combined heat and power units with thermal storage device based on graph method[J].Thermal Power Generation,2017,(10):57.
[4]侯玉婷,李晓博,刘 畅,等.火电机组灵活性改造形势及技术应用[J].热力发电,2018,(5):8.[doi:10.19666/j.rlfd.201803043 ]
 JI Jiangming,YANG Baiyi.Flexibility reform situation and technical application of thermal power units[J].Thermal Power Generation,2018,(10):8.[doi:10.19666/j.rlfd.201803043 ]
[5]刘 畅,耿林霄,高 林,等.凝结水变负荷深度调峰技术实现方法及其经济性评价[J].热力发电,2018,(5):57.[doi:10.19666/j.rlfd.201712152 ]
 LIU Chang,GENG Linxiao,GAO Lin,et al.Realization method and economic evaluation of variable load deep peak regulation technology based on condensate water throttling[J].Thermal Power Generation,2018,(10):57.[doi:10.19666/j.rlfd.201712152 ]
[6]谢 天,吕 凯,黄嘉驷,等.适应深度调峰的广义回热系统热力特性研究[J].热力发电,2018,(5):71.[doi:10.19666/j.rlfd.201801001 ]
 XIE Tian,LYU Kai,HUANG Jiasi,et al.Study on the thermodynamic characteristics of generalized regenerative system used for deep peak load regulating operation[J].Thermal Power Generation,2018,(10):71.[doi:10.19666/j.rlfd.201801001 ]
[7]张广才,周 科,柳宏刚,等.某超临界600 MW机组直流锅炉深度调峰实践[J].热力发电,2018,(5):83.[doi:10.19666/j.rlfd.201802020 ]
 ZHANG Guangcai,ZHOU Ke,LIU Honggang,et al.Practice of deep peak load regulation for a 600 MW supercritical concurrent boiler[J].Thermal Power Generation,2018,(10):83.[doi:10.19666/j.rlfd.201802020 ]
[8]吴瑞康,华 敏,秦 攀,等.燃煤机组深度调峰对汽轮机设备的影响[J].热力发电,2018,(5):89.[doi:10.19666/j.rlfd.201802028 ]
 WU Ruikang,HUA Min,QIN Pan,et al.Influence of deep peak load regulation of coal-fired units on turbine equipment[J].Thermal Power Generation,2018,(10):89.[doi:10.19666/j.rlfd.201802028 ]
[9]周俊波,侯玉婷,王明坤.火电机组深度调峰热工控制系统改造[J].热力发电,2018,(5):95.[doi:10.19666/j.rlfd.201803042 ]
 ZHOU Junbo,HOU Yuting,WANG Mingkun.Thermal control system retrofit for deep peak load regulation of thermal power unit[J].Thermal Power Generation,2018,(10):95.[doi:10.19666/j.rlfd.201803042 ]

备注/Memo

备注/Memo:
马玉华(1975—),男,硕士,高级工程师,主要研究方向为电厂运行技术,mayuhua16@163.com。
更新日期/Last Update: 2018-09-29