[1]李广超,于全朋,张 魏,等.吹风比对涡轮叶片尾缘气膜冷却效率影响[J].热力发电,2018,(10):58-65.[doi:10.19666/j.rlfd.201712147]
 LI Guangchao,YU Quanpeng,ZHANG Wei,et al.Effect of blowing ratio on film cooling efficiency of trailing edge on turbine blade[J].Thermal Power Generation,2018,(10):58-65.[doi:10.19666/j.rlfd.201712147]
点击复制

吹风比对涡轮叶片尾缘气膜冷却效率影响()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年10期
页码:
58-65
栏目:
热能科学研究
出版日期:
2018-09-28

文章信息/Info

Title:
Effect of blowing ratio on film cooling efficiency of trailing edge on turbine blade
作者:
李广超于全朋张 魏寇志海
沈阳航空航天大学航空航天工程学部(院),辽宁 沈阳 110136
Author(s):
LI Guangchao YU Quanpeng ZHANG Wei KOU Zhihai
Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
关键词:
吹风比燃气轮机涡轮叶片尾缘劈缝后台阶气膜冷却效率数值模拟
分类号:
TK47
DOI:
10.19666/j.rlfd.201712147
文献标志码:
A
摘要:
为了探索涡轮叶片尾缘劈缝冷却特性,针对后台阶三维劈缝冷却模型,采用数值模拟方法研究了吹风比Br=0.5、0.8、1.0、1.5时的气膜冷却效率。结果表明:后台阶区域劈缝下游气膜冷却效率比肋下游气膜冷却效率在小吹风比(Br=0.5)时高10.9%~39.1%,在大吹风比(Br=1.5)时高53.5%~56.0%;Br越大,后台阶气膜冷却效率沿流向降低速度越快,后台阶尾部气膜冷却效率沿半圆柱周长方向降低速度越慢;肋下游后台阶尾部,Br为0.8和1.0时气膜冷却效率比Br为0.5和1.5时高7.0%左右;后台阶尾部是气膜冷却的薄弱部位,其面积加权平均气膜冷却效率比后台阶低37.0%~39.0%;Br为0.8、1.0时,后台阶及其尾部的面积加权平均气膜冷却效率最高,较Br=0.5时高9.0%~11.0%,较Br=1.5时高3.0%~6.0%。

参考文献/References:

[1] 楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安:西北工业大学出版社, 2009: 118-120.
CHU Wuli, LIU Qianzhi, HU Chunbo. Principle of aircraft blade[M]. Xi’an: Northwestern Polytechnical University Press, 2009: 118-120.
[2] 林汝谋. 工业燃气轮机发展的关键技术[J]. 热力发电, 1999, 28(1): 26-28.
LIN Rumou. Key developments of industrial gas turbine[J]. Thermal Power Generation, 1999, 28(1): 26-28.
[3] 曹玉璋. 航空发动机传热学[M]. 北京: 北京航空航天大学出版社, 2005: 58-59.
CAO Yuzhang. Aero engine heat transfer[M]. Beijing: Beihang University Press, 2005: 58-59.
[4] TELISINGHE J C, IRELAND P T, JONES T V, et al. Comparative study between a cut-back and conventional trailing edge film cooling system[C]//Proceedings of ASME Turbo Expo Power for Land Sea and Air. Barcelona: ASME, 2006: 983-993.
[5] FITT A D, OCKENDON J R, JONES T V. Aerodynamics of slot-film cooling - theory and experiment[J]. Journal of Fluid Mechanics, 1985, 160: 15-27.
[6] 周志强. 涡轮叶片尾缘半劈缝气膜冷却实验研究[D]. 西安: 西北工业大学, 2005: 93-96.
ZHOU Zhiqiang. Experimental study on film cooling of turbine blade trailing edge[D]. Xi’an: Northwestern Polytechnical University, 2005: 93-96.
[7] 朱惠人, 原和朋, 周志强, 等. 几何结构对后台阶缝隙气膜冷却效率的影响[J]. 推进技术, 2006, 27(4):312-315.
ZHU Huiren, YUAN Hepeng, ZHOU Zhiqiang, et al. Effect of geometry of back-step slots on film cooling[J]. Journal of Propulsion Technology, 2006, 27(4): 312-315.
[8] 原和朋, 朱惠人, 孔满招, 等. 几何结构对后台阶三维缝隙换热影响的研究[J]. 热科学与技术, 2006, 5(1): 17-21.
YUAN Hepeng, ZHU Huiren, KONG Manzhao, et al. Effect of geometry of back-step on heat transfer coefficients in three dimensional slots[J]. Journal of Thermal Science and Technology, 2006, 5(1): 17-21.
[9] 朱惠人, 原和朋, 周志强, 等. 气动参数对后台阶三维缝隙气膜冷却效率的影响[J]. 航空动力学报, 2006, 21(2): 315-319.
ZHU Huiren, YUAN Hepeng, ZHOU Zhiqiang, et al. Effect of aerodynamic parameters of backward-step three dimensional slots on film cooling effectiveness[J]. Journal of the Aerospace Power, 2006, 21(2): 315-319.
[10] 高炎, 晏鑫, 李军, 等. 燃气透平叶片尾缘开缝结构冷却性能的数值研究[J]. 西安交通大学学报, 2016, 50(3): 29-37.
GAO Yan, YAN Xin, LI Jun, et al. Numerical investigations on the cooling performance of trailing edge cutback in gas turbine blade[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 29-37.
[11] 李广超, 彭宁建, 张魏, 等. 壁厚对气膜冷却效率影响数值模拟[J]. 热力发电, 2017, 46(9): 59-64.
LI Guangchao, PENG Ningjian, ZHANG Wei, et al. Effect of wall thickness on film cooling effectiveness: numerical simulation[J]. Thermal Power Generation, 2017, 46(9): 59-64.
[12] 王掩刚, 刘波, 姜健, 等. 涡轮叶片尾缘开缝喷气的数值模拟和试验研究[J]. 航空动力学报, 2006, 21(3): 474-479.
WANG Yangang, LIU Bo, JIANG Jian, et al. Experiment and numerical simulation investigation of turbine blade with trailing edge ejection[J]. Journal of the Aerospace Power, 2006, 21(3): 474-479.
[13] 贺宜红, 杨卫华, 孙瑞嘉, 等. 不同叶片尾缘结构冷却效率的试验研究[J]. 南京航空航天大学学报, 2012, 44(1): 8-13.
HE Yihong, YANG Weihua, SUN Ruijia, et al. Experimental study on film cooling effectiveness of turbine blade trailing edges[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(1): 8-13.
[14] 葛绍岩, 刘登嬴, 许靖中, 等. 气膜冷却[M]. 北京: 科学出版社, 1985: 71-79.
GE Shaoyan, LIU Dengying, XU Jingzhong, et al. Gas film cooling[M]. Beijing: Science Press, 1985: 71-79.
[15] MARTINI P, SCHULZ A, WHITNEY C F, et al. Experimental and numerical investigation of trailing edge film cooling downstream of a slot with internal rib arrays[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2003, 217(4): 393-401.
[16] AMES F, FIALA N, JOHNSON J, et al. Gill slot trailing edge heat transfer: effects of blowing rate, Reynolds number, and external turbulence on heat transfer and film cooling effectiveness[C]//Proceedings of ASME Turbo Expo 2007: Power for Land Sea and Air. Montreal: ASME, 2007: 351-362.
[17] FIALA N J, JASWAL I, AMES F E. Letterbox trailing edge heat transfer: effects of blowing rate, Reynolds number, and external turbulence on heat transfer and film cooling effectiveness[J]. Journal of Turbomachinery, 2008, 132(1): 455-465.
[18] TASLIM M E, SPRING S D, MEHLMAN B P. Experimental investigation of film cooling effectiveness for slots of various exit geometries[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(2): 302-307.
[19] EFFENDY Marwan, YAO Yufeng, YAO Jun. Comparison study of turbine blade with trailing - edge cutback coolant ejection designs[C]//Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA, USA: AIAA, 2013: 548.
[20] HOLLOWAY D S, LEYLEK J H, BUCK F A. Pressure side bleed film cooling: part 2 unsteady framework for experimental and computational results[C]//Proceedings of ASME Turbo Expo 2002: Power for Land Sea and Air. Amsterdam: ASME, 2002: 835-843.
(责任编辑 刘永强)

相似文献/References:

[1]司派友,左 川.联合循环机组汽轮机深度滑参数停机[J].热力发电,2009,(06):0.
[2]施延洲,杨国荣,姚啸林,等.联合循环机组燃气透平进气温度的计算[J].热力发电,2009,(02):0.
[3]苏 磊,张 红.住宅小区天然气热电冷三联产方案及其技术经济性能分析[J].热力发电,2006,(05):0.
[4]林 鸿,杨 承,杨泽亮,等.燃气-蒸汽联合循环进气喷水冷却经济评价数据集成方法[J].热力发电,2005,(10):0.
[5]陈 鹏,甘孟必,高 岩.燃机进气安全隔离滤网钢丝失效原因分析[J].热力发电,2004,(12):0.
[6]忻奇峰.燃气轮机热电联产系统的应用和完善[J].热力发电,2005,(01):0.
[7]刘晓宏,杨寿敏,马汀山.降低联合循环机组整体性能试验不确定度的措施[J].热力发电,2005,(02):0.
[8]赵剑云,潘 维,池作和.大型燃气轮机余热锅炉进口烟道速度均匀性研究[J].热力发电,2004,(08):0.
[9]喻志强,巩桂亮.PG9171E燃气轮机燃油系统振荡故障分析[J].热力发电,2003,(06):0.
[10]薛建中,马光宇.一种新型分散控制系统在联合循环电厂中的应用[J].热力发电,2002,(06):0.
[11]张玲,祝健,石景开,等.多因素影响下平板气膜冷却效果的数值模拟[J].热力发电,2015,(06):68.
 ZHANG Ling,ZHU Jian,SHI Jingkai,et al.Orthogonal simulation of multi-factor influenced film cooling efficiency[J].Thermal Power Generation,2015,(10):68.
[12]李广超,陈钰恺,张魏,等.双向扩张型孔射流流量系数试验研究[J].热力发电,2015,(12):37.
 LI Guangchao,CHEN Yukai,ZHANG Wei,et al.Investigation on discharge coefficient of jet from bidirectionally expanded holes[J].Thermal Power Generation,2015,(10):37.

备注/Memo

备注/Memo:
李广超(1979—),男,博士,副教授,主要研究方向为燃气轮机气动热力学,ligc706@163.com。
更新日期/Last Update: 2018-09-29