[1]王明晓,邓 凯,王炜豪,等.氢体积分数对甲烷-氢贫燃预混钝体火焰燃烧不稳定性影响[J].热力发电,2018,(10):44-50.[doi:10.19666/j.rlfd.201712151]
 WANG Mingxiao,DENG Kai,WANG Weihao,et al.Effects of hydrogen volume fraction on combustion instability of methane-hydrogen lean premixed bluff-body flame[J].Thermal Power Generation,2018,(10):44-50.[doi:10.19666/j.rlfd.201712151]
点击复制

氢体积分数对甲烷-氢贫燃预混钝体火焰燃烧不稳定性影响

参考文献/References:

[1] ZHANG Z, ZHAO D, HAN N, et al. Control of combustion instability with a tunable Helmholtz resonator[J]. Aerospace Science and Technology, 2015, 41: 55-62.
[2] MIN C L, YOON J, JOO S, et al. Gas turbine combustion characteristics of H2/CO synthetic gas for coal integrated gasification combined cycle applications[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11032-11045.
[3] KITANO T, TSUJI T, KUROSE R, et al. Effect of pressure oscillations on flashback characteristics in a turbulent channel flow[J]. Energy and Fuels, 2015, 29(10): 6815-6822.
[4] GARC?A-ARMINGOL T, BALLESTER J. Operational issues in premixed combustion of hydrogen-enriched and syngas fuels[J]. International Journal of Hydrogen Energy, 2015, 40(2): 1229-1243
[5] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28.
[6] ZHAO D, JI C, LI X, et al. Mitigation of premixed flame-sustained thermoacoustic oscillations using an electrical heater[J]. International Journal of Heat and Mass Transfer, 2015, 86: 309-318.
[7] MIRAT C, DUROX D, SCHULLER T. Stability analysis of a swirl spray combustor based on flame describing function[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3291-3298.
[8] O’CONNOR J, ACHARYA V, LIEUWEN T. Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes[J]. Progress in Energy and Combustion Science, 2015, 49: 1-39.
[9] TAAMALLAH S, LABRY Z A, SHANBHOGUE S J, et al. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3273-3282.
[10] TANG C, ZHANG Y, HUANG Z. Progress in combustion investigations of hydrogen enriched hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2014, 30(2): 195-216.
[11] BOUSHAKI T, DHU? Y, SELLE L, et al. Effects of hydrogen and steam addition on laminar burning velocity of methane-air premixed flame: experimental and numerical analysis[J]. International Journal of Hydrogen Energy, 2012, 37(11): 9412-9422.
[12] LEE H C, JIANG L Y, MOHAMAD A A. A review on the laminar flame speed and ignition delay time of Syngas mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1105-1121.
[13] SYRED N, LEWIS J, MEDINA A V, et al. Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner[J]. Applied Energy, 2014, 116(3): 288-296.
[14] DAM B, LOVE N, CHOUDHURI A. Flashback propensity of syngas fuels[J]. Fuel, 2011, 90(2): 618-625.
[15] GOKULAKRISHNAN P, FULLER C, KLASSEN M, et al. Ignition of light hydrocarbon mixtures relevant to thermal cracking of jet fuels[C]. Aiaa Aerospace Sciences Meeting, 2015: 133-135.
[16] SHOSHIN Y, BASTIAANS R J M, GOEY L P H D. Anomalous blow-off behavior of laminar inverted flames of ultra-lean hydrogen-methane-air mixtures[J]. Combus- tion and Flame, 2013, 160(3): 565-576.
[17] HONG S, SPETH R L, SHANBHOGUE S J, et al. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation[J]. Combustion and Flame, 2013, 160(8): 1381-1397.
[18] DONG X, NATHAN G J, MAHMOUD S, et al. Global characteristics of non-premixed jet flames of hydrogen-hydrocarbon blended fuels[J]. Combustion and Flame, 2015, 162(4): 1326-1335.
[19] LEE J, JEON S, KIM Y. Multi-environment probability density function approach for turbulent CH4/H2, flames under the MILD combustion condition[J]. Combustion and Flame, 2014, 162(4): 1464-1476.
[20] JOO S, YOON J, KIM J, et al. NOx emissions characteri- stics of the partially premixed combustion of H2 /CO/CH4 syngas using artificial neural networks[J]. Applied Thermal Engineering, 2015, 80: 436-444.
[21] EMADI M, KAUFMAN K, BURKHALTER M W, et al. Examination of thermo-acoustic instability in a low swirl burner[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13594-13603.
[22] SARLI V D, BENEDETTO A D, LONG E J, et al. Time-resolved particle image velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16201-16213.
[23] BOUREHL A A, BAILLOT F. Appearance and stability of a laminar conical premixed flame subjected to an acoustic perturbation[J]. Combustion and Flame, 1998, 114(3): 303-318.
[24] BALACHANDRAN R, AYOOLA B O, KAMINSKI C F, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143: 37-55.
[25] HONG S, SHANBHOGUE S J, SPETH R L, et al. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions[J]. Combustion and Flame, 2013, 160(12): 2827-2842.
[26] 宋旭东, 郭庆华, 张婷, 等. 甲烷同轴射流扩散火焰中自由基的辐射特性[J]. 中国电机工程学报, 2013, 33(35): 50-57.
SONG Xudong, GUO Qinghua, ZHANG Ting, et al. Radiation characteristics of radicals in methane co-flowing jet diffusion flame[J]. Proceedings of the CSEE, 2013, 33(35): 50-57.
[27] RUGGLES A, KELMAN J. Unsteady vortex breakdown in an atmospheric swirl stabilised combustor. Part 1: chamber behavior[J]. Combustion and Flame, 2014, 162(2): 388-407.
[28] YOON J, JOO S, KIM J, et al. Effects of convection time on the high harmonic combustion instability in a partially premixed combustor[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3753-3761.
[29] INNOCENTI A, ANDREINI A, FACCHINI B. Numerical identification of a premixed flame transfer function and stability analysis of a lean burn combustor[J]. Energy Procedia, 2015, 82: 358-365.
[30] LACOSTE D A, YUAN X, MOECK J P, et al. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4183-4192.
[31] CUQUEL A, DUROX D, SCHULLER T. Scaling the flame transfer function of confined premixed conical flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1007-1014.
[32] 唐豪杰, 高原, 朱民. 预混火焰传递函数的测量与分析[J]. 工程热物理学报, 2011, 32(1): 173-176
TANG Haojie, GAO Yuan, ZHU Min. Measurements and analysis of premixed flame transfer function[J]. Journal of Engineering Thermophysics, 2011, 32(1): 173-176.
[33] SARLI V D, BENEDETTO A D. Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7510-7518.
(责任编辑 马昕红)

备注/Memo

王明晓(1986—),男,博士研究生,主要研究方向为火焰动力学和燃烧不稳定性,wmxgood@126.com。

更新日期/Last Update: 2018-09-29