[1]姚 燕,王乐乐,李乐田,等.燃煤电厂选择性催化还原脱硝催化剂砷中毒分析[J].热力发电,2018,(10):31-36.[doi:10.19666/j.rlfd.201803033]
 YAO Yan,WANG Lele,LI Letian,et al.Arsenic deactivation of honeycomb SCR catalysts in coal-fired power plants[J].Thermal Power Generation,2018,(10):31-36.[doi:10.19666/j.rlfd.201803033]
点击复制

燃煤电厂选择性催化还原脱硝催化剂砷中毒分析()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年10期
页码:
31-36
栏目:
污染物排放控制
出版日期:
2018-09-28

文章信息/Info

Title:
Arsenic deactivation of honeycomb SCR catalysts in coal-fired power plants
作者:
姚 燕1王乐乐1李乐田1马云龙1刘晓敏2柳晨清1
1.西安热工研究院有限公司苏州分公司,江苏 苏州 215153; 2.厦门华夏国际电力发展有限公司,福建 厦门 361026
Author(s):
YAO Yan1 WANG Lele1 LI Letian1 MA Yunlong1 LIU Xiaomin2 LIU Chenqing1
1. Xi’an Thermal Power Research Institute Co., Ltd., Suzhou Branch, Suzhou 215153, China; 2. Xiamen Huaxia International Power Development Co., Ltd., Xiamen 361026, China
关键词:
SCR催化剂脱硝性能砷中毒活性劣化理化分析性能测试
分类号:
TK229.6;X511
DOI:
10.19666/j.rlfd.201803033
文献标志码:
A
摘要:
以某燃煤电厂高温高砷(As)环境下在役蜂窝式选择性催化还原(SCR)脱硝催化剂为研究对象,在中试试验台上对其脱硝效率、氨逃逸、活性、SO2/SO3转化率等脱硝性能进行了检测评估,并运用X射线衍射仪(XRD)、X射线荧光光谱仪(XRF)、孔容孔径分析、扫描电镜(SEM-EDS)、电感耦合等离子-质谱仪(ICP-MS)和傅里叶变换红外光谱仪(FTIR)等对催化剂进行了理化特性表征。结果表明:该在役催化剂经过4 000 h的运行,其活性下降幅度达到30%以上,已无法满足80%脱硝效率下氨逃逸小于3 ?L/L的设计要求;该在役催化剂未发生因高温(415 ℃)引起的催化剂晶态变化或烧结团聚等;SEM-EDS、XRF以及ICP-MS检测结果表明,该在役催化剂在运行过程中As在其表面和孔道内沉积,致使其微观比表面积和孔容急剧减小,造成部分微孔及介孔的堵塞,是其活性下降的主要原因。

参考文献/References:

[1] MADIA G, ELSENER M, KOEBEL M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process[J]. Applied Catalysis B: Environmental, 2002, 39(2): 181-190.
[2] CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537.
[3] 王起超, 邵庆春, 康淑莲, 等. 煤中15种微量元素在燃烧产物中的分配[J]. 燃料化学学报, 1996, 24(2): 137-142.
WANG Qichao, SHAO Qingchun, KANG Shulian, et al. Distribution of 15 trace elements in the combustion products of coal[J]. Journal of Fuel Chemistry and Technology, 1996, 24(2): 137-142.
[4] HUMS E. Mechanistic effects of arsenic oxide on the catalytic components of deNOx catalysts[J]. Industrial & Engineering Chemistry Research, 1992, 31(4): 1030-1035.
[5] 沈伯雄, 熊丽仙, 刘亭. 负载型V2O5-WO3/TiO2催化剂的砷中毒研究[J]. 燃料化学学报, 2011, 39(11): 856-859.
SHEN Boxiong, XIONG Lixian, LIU Ting. Study on arsenic poisoning for loading catalyst of V2O5-WO3/TiO2[J]. Journal of Fuel Chemistry and Technology, 2011, 39(11): 856-859.
[6] 丁健, 刘清才, 孔明, 等. 燃煤烟气中砷对V2O5-WO3/TiO2SCR脱硝催化剂性能的影响[J]. 燃料化学学报, 2016, 44(4): 495-499.
DING Jian, LIU Qingcai, KONG Ming, et al. Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 495-499.
[7] 火电厂烟气脱硝催化剂检测技术规范: DL/T 1286—2013[S].
Testing guideline of SCR catalysts for thermal power plants: DL/T 1286—2013[S].
[8] 姚燕, 王丽朋, 孔凡海, 等. SCR脱硝系统蜂窝式催化剂性能评估及寿命管理[J]. 热力发电, 2016, 45(11): 114-119.
YAO Yan, WANG Lipeng, KONG Fanhai, et al. Performance evaluation and lifetime management of honeycomb SCR catalysts in coal-fired power plant[J]. Thermal Power Generation, 2016, 45(11): 114-119.
[9] 杨恂, 黄锐, 孔凡海, 等. SCR脱硝催化剂活性的测量和应用[J]. 热力发电, 2013, 42(1): 15-19.
YANG Xun, HUANG Rui, KONG Fanhai, et al. Activity of SCR denitrification catalyst: measurement and applications[J]. Thermal Power Generation, 2013, 42(1): 15-19.
[10] 李玉江, 吴涛. 德国燃煤电厂氮氧化物的控制技术[J]. 环境科学研究, 2000, 13(4): 47-49.
LI Yujiang, WU Tao. Technology on denitrogenation in coal power plants of Germany[J]. Research of Environmental Sciences, 2000, 13(4): 47-49.
[11] 姚燕, 杨晓宁, 孔凡海, 等. 燃煤电厂蜂窝式SCR催化剂性能检测评估研究[J]. 中国电机工程学报, 2017, 37(增刊1): 112-117.
YAO Yan, YANG Xiaoning, KONG Fanhai, et al. Performance analysis and evaluation of honeycomb SCR catalysts in coal-fired power plant[J]. Proceedings of the CSEE, 2017, 37(Suppl.1): 112-117.
[12] JENSEN J R, SLABIAK T, WHITE N. Arsenic resistant SCR catalysts[R]. Haldor Tops?e Inco., 2005: 8.
[13] 朱崇兵, 金保升, 仲兆平, 等. K2O对V2O5-WO3/TiO2催化剂的中毒作用[J]. 东南大学学报(自然科学版), 2008, 38(1): 101-105.
ZHU Chongbing, JIN Baosheng, ZHONG Zhaoping, et al. Poisoning effect of K2O on V2O5-WO3/TiO2 catalysts[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(1): 101-105.
[14] GUO X Y. Poisoning and sulfation on vanadia SCR catalyst[D]. Utah: Brigham Young University, 2006: 28.
[15] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[M]// Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, 1985: 603-619.
[16] HANS Jensen-Holm, NAN-Yu Topsoe, 崔建华. 选择催化还原(SCR)脱硝技术在中国燃煤锅炉上的应用(上)[J]. 热力发电, 2007, 36(8): 13-18.
HANS Jensen-Holm, NAN-Yu Topsoe, CUI Jianhua. Application of SCR denitrification technology onto coal-fired boilers in China[J]. Thermal Power Generation, 2007, 36(8): 13-18.
[17] 朱崇兵, 金保升, 仲兆平, 等. V2O5-WO3/TiO2烟气脱硝催化剂的载体选择[J]. 中国电机工程学报, 2008, 28(11): 41-47.
ZHU Chongbing, JIN Baosheng, ZHONG Zhaoping, et al. Selection of carrier for V2O5-WO3/TiO2 de-NOx catalyst [J]. Proceedings of the CSEE, 2008, 28(11): 41-47.
[18] 商雪松, 陈进生, 胡恭任, 等. 商用SCR脱硝催化剂K2O中毒后再生: (NH4)2SO4溶液[J]. 燃料化学学报, 2012, 40(6): 750-756.
SHANG Xuesong, CHEN Jinsheng, HU Gongren, et al. Regeneration of commercial de-NOx SCR catalysts poisoned by K2O with (NH4)2SO4 solution[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 750-756.
(责任编辑 杨嘉蕾)

相似文献/References:

[1]徐晓涛,张强,杨世极,等.温度及盐酸浓度对改性SCR催化剂汞氧化能力的影响[J].热力发电,2013,(07):60.
 XU Xiaotao,ZHANG Qiang,YANG Shiji,et al.Effect of temperature and hydrochloric acid concentration on mercury oxidation ability of modified SCR catalyst[J].Thermal Power Generation,2013,(10):60.
[2]傅 玉,陆 强,庄 柯,等.基于灰色预测模型和曲线拟合模型的SCR烟气脱硝催化剂寿命预测[J].热力发电,2017,(7):60.
 FU Yu,LU Qiang,ZHUANG Ke,et al.Life prediction for SCR flue gas denitrification catalyst in coal-fired power plants[J].Thermal Power Generation,2017,(10):60.

备注/Memo

备注/Memo:
姚燕(1985—),博士,高级工程师,主要研究方向为大气污染控制技术,yaoyan1114@126.com。
更新日期/Last Update: 2018-09-29