[1]杨国田,张 涛,王英男,等.基于长短期记忆神经网络的火电厂NOx排放预测模型[J].热力发电,2018,(10):12-17.[doi:10.19666/j.rlfd.201805113]
 YANG Guotian,ZHANG Tao,WANG Yingnan,et al.Prediction model for NOx emissions from thermal power plants based on long-short-term memory neural network[J].Thermal Power Generation,2018,(10):12-17.[doi:10.19666/j.rlfd.201805113]
点击复制

基于长短期记忆神经网络的火电厂NOx排放预测模型

参考文献/References:

[1] 国家质量监督检查检疫总局环境保护部. 锅炉大气污染物排放标准: GB 13271—2014[S]. 北京: 中国环境科学出版社, 2014: 3.
Environmental Protection Department, General Admini- stration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Emission standard of air pollutants for boiler: GB 13271—2014[S]. Beijing: China Environmental Science Press, 2014: 3.
[2] 卓建坤, 焦伟红, 宋少鹏, 等. 锅炉燃烧优化中NOx预测模型研究进展[J]. 燃烧科学与技术, 2016, 22(6): 531-540.
ZHUO Jiankun, JIAO Weihong, SONG Shaopeng, et al. A review on nitrogen oxides prediction model in combustion optimization of boilers[J]. Journal of Combustion Science and Technology, 2016, 22(6): 531-540.
[3] 王林, 王小成, 郭亦文, 等. 基于深度主元分析的电站锅炉NOx质量浓度预测模型研究[J]. 热力发电, 2017, 46(12): 68-74.
WANG Lin, WANG Xiaocheng, GUO Yiwen, et al. Research and application of prediction model for NOx concentration in utility boilers based on deep component analysis[J]. Thermal Power Generation, 2017, 46(12):68-74.
[4] 张振星. 基于智能优化算法的电站锅炉燃烧优化[D]. 北京: 华北电力大学, 2015: 23-47.
ZHANG Zhenxing. Utility boiler combustion optimi- zation based on intelligent optimization algorithm[D]. Beijing: North China Electric Power University, 2015: 23-47.
[5] 顾燕萍, 赵文杰, 吴占松. 基于最小二乘支持向量机的电站锅炉燃烧优化[J]. 中国电机工程学报, 2010, 30(17): 91-97.
GU Yanping, ZHAO Wenjie, WU Zhansong. Combustion optimization for utility boiler based on least square-support vector machine[J]. Proceedings of the CSEE, 2010, 30(17): 91-97.
[6] 尹凌霄, 王明春, 尚强. 基于支持向量机和粒子群算法的电站锅炉燃烧优化[J]. 锅炉技术, 2014, 45(4):13-17.
YIN Lingxiao, WANG Mingchun, SHANG Qiang. The combustion optimization of a coal-fired boiler based on support vector machine and particle swarm algorithm [J]. Boiler Technology, 2014, 45(4): 13-17.
[7] 赵志宏, 韩超, 赵文杰. 主元分析及多变量过程监测联合预测NOx质量浓度[J]. 热力发电, 2016, 45(7): 98-103.
ZHAO Zhihong, HAN Chao, ZHAO Wenjie. NOx content prediction based on principal component analysis and multivariable process monitoring[J]. Thermal Power Generation, 2016, 45(7): 98-103.
[8] 李鹏辉, 刘冉, 余廷芳. 基于支持向量机和BP神经网络的燃煤锅炉NOx排放预测[J]. 热能动力工程, 2016, 31(10): 104-108.
LI Penghui, LIU Ran, YU Tingfang. Modeling of NOx emission from coal fired boiler based on intelligent algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(10): 104-108.
[9] ABDI H, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.
[10] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 2014, 1(2): 270-280.
[11] 刘传林, 苏景军, 梁文祯, 等. 基于改进级联神经网络自适应电网谐波检测[J]. 电力系统保护与控制, 2016, 44(20): 134-141.
LIU Chuanlin, SU Jingjun, LIANG Wenzhen, et al. Adaptive detection of harmonic current in power grid based on improved cascade neural network[J]. Power System Protection and Control, 2016, 44(20): 134-141.
[12] 孟安波, 胡函武, 刘向东. 基于纵横交叉算法优化神经网络的负荷预测模型[J]. 电力系统保护与控制, 2016, 44(7): 102-106.
MENG Anbo, HU Hanwu, LIU Xiangdong. Short-term load forecasting using neural network based on wavelets and crisscross optimization algorithm[J]. Power System Protection and Control, 2016, 44(7): 102-106.
[13] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks [C]// Proceedings of the 30th International Conference on Machine Learning. 2013: III-1310.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[15] GRAVES A. Long short-term memory[M]. Berlin: Springer Berlin Heidelberg, 2012: 1735-1780.
[16] SRIVASTAVA N, MANSIMOV E, SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]//Proceedings of the 32nd International Confe- rence on Machine Learning. 2015: 843-852.
[17] 陈卓, 孙龙祥. 基于深度学习LSTM网络的短期电力负荷预测方法[J]. 电子技术, 2018(1): 39-41.
CHEN Zhuo, SUN Longxiang. Short-term electrical load forecasting based on deep learning LSTM neural networks[J]. Electronics Technology, 2018(1): 39-41.
[18] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C, 2015, 54: 187-197.
[19] HANSON J, YANG Y, PALIWAL K, et al. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks[J]. Bioinformatics, 2016, 33(5): 685.
[20] GREFF K, SRIVASTAVA R K, KOUTN?K J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 28(10): 2222-2232.
[21] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
[22] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: 2014: 1-15.
(责任编辑 杜亚勤)

相似文献/References:

[1]石 磊,石 诚,李少宁,等.直接空冷机组排汽装置阻力特性的数值模拟[J].热力发电,2009,(08):23.
 SHI Lei,SHI Cheng,LI Shao-ning,et al.NUMERICAL SIMULATION OF RESISTANCE BEHAVIOR FOR EXHAUST STEAM BOX OF DIRECT AIR-COOLED UNIT[J].Thermal Power Generation,2009,(10):23.
[2]郑 林,常鲜戎,崔 勇.IAPWS-IF97公式在火电厂仿真中的应用[J].热力发电,2009,(08):36.
 ZHENG Lin,CHANG Xian-rong,CUI Yong.APPLICATION OF IAPWS-IF97 FORMULA IN EMULATION OF THERMAL POWER PLANT[J].Thermal Power Generation,2009,(10):36.
[3]陈泽华.双氧水+EDTA在超临界机组化学清洗中的应用[J].热力发电,2009,(08):70.
 CHEN Ze-hua.APPLICATION OF H2O2+EDTA CHEMICAL CLEANING OF SUPERCRITICAL UNITS[J].Thermal Power Generation,2009,(10):70.
[4]李建波,陈 东.2×330 MW机组凝结水泵变频改造[J].热力发电,2009,(08):113.
 ZHOU Jian,YAN Wei-ping,SHI Li-guo,et al.FREQUENCY- VARYING RETROFIT OF ELECTRIC MOTORS USED FOR CONDENSATE PUMPS OF 2×330 MW UNITS[J].Thermal Power Generation,2009,(10):113.
[5]王春昌.几种燃烧器的功能及其局限性研究[J].热力发电,2009,(09):17.
 WANG Chun-chang.STUDY ON FUNCTIONS OF SEVERAL BURNERS AND THEIR LIMITATIONS[J].Thermal Power Generation,2009,(10):17.
[6]李学斌.基于多目标遗传算法和多属性决策的主蒸汽温度PID参数优化[J].热力发电,2009,(09):33.
 LI Xue-bin.OPTIMIZATION OF PID CONTROLLER PARAMETERS FOR MAIN STEAM TEMPERATURE BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM AND MULTI-]ATTRIBUTE DECISION MAKING[J].Thermal Power Generation,2009,(10):33.
[7]王 堃,胡正定,孔松涛.面向控制的过热蒸汽温度动态特性分析[J].热力发电,2009,(09):44.
 WANG Kun,HU Zheng-ding,KONG Song-tao.ANALYSIS OF CONTROL-ORIENTED DYNAMIC BEHAVIOR FOR SUPERHEATED STEAM TEMPERATURE[J].Thermal Power Generation,2009,(10):44.
[8]张军昌.YNE系列粉末离子交换树脂及纤维粉的研制和应用[J].热力发电,2009,(10):71.
 ZHANG Jun[CD*]chang.DEVELOPMENT AND APPLICATION OF YNE SERIES POWERED ION EXCHANGE RESIN AND THE FIBRE POWDER[J].Thermal Power Generation,2009,(10):71.
[9]冯江涛.二模态过热蒸汽温度控制策略在DCS中的应用研究[J].热力发电,2009,(05):0.
[10]车德勇,张 玉,常 松,等.仿真技术在火电厂建设工程中的应用[J].热力发电,2009,(06):0.

备注/Memo

杨国田(1962—),男,博士,教授,主要研究方向为锅炉燃烧优化及嵌入式系统研发,ygt@ncepu.edu.cn。

更新日期/Last Update: 2018-09-29