[1]林 彤,周克毅,司晓东.电厂孔板下游流动加速腐蚀模拟研究[J].热力发电,2018,(预出版):1-7.[doi:10.19666/j.rlfd.201807130]
 LIN Tong,ZHOU Keyi,SI Xiaodong. Simulation Research on Flow-Accelerated Corrosion of in Downstream of Orifice Plate of the Power Plant[J].Thermal Power Generation,2018,(预出版):1-7.[doi:10.19666/j.rlfd.201807130]
点击复制

电厂孔板下游流动加速腐蚀模拟研究()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年预出版
页码:
1-7
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
 Simulation Research on Flow-Accelerated Corrosion of in Downstream of Orifice Plate of the Power Plant
作者:
 林 彤周克毅司晓东
 东南大学能源与环境学院,江苏 南京 210096
Author(s):
 LIN Tong ZHOU Keyi SI Xiaodong
 School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
 FAC模型流动加速腐蚀孔径比流速传质系数溶解度
分类号:
TM623.8
DOI:
10.19666/j.rlfd.201807130
文献标志码:
A
摘要:
 使用计算流体软件对电厂孔板下游流场进行模拟分析,研究不同流速和不同孔径比对孔板下游流场分布、传质系数的影响规律,并基于所建立的流动加速腐蚀(FAC)过程模型,确定孔板下游的腐蚀行为与流速、孔径比之间的相关性。结果表明:孔径比一定时,孔板下游传质系数和流动加速腐蚀速率随着流速增大整体呈现增大趋势,并且腐蚀峰值出现位置向孔板下游偏移;流体流速一定时,孔径比越小,传质系数和流动加速腐蚀速率越大,腐蚀高发区向孔板方向移动。该模拟结果与实验结果较吻合。

参考文献/References:

 [1] TRUONG T C, LEE J R. Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging [J]. Structural Health Monitoring, 2017, 17: 255-265.
[2] JIANG D F, XU H, DENG B, et al. Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant [J]. Applied Thermal Engineering, 2016, 93:1248-1253.
[3] PETRIC G W, KSIAZEK P E. Flow Accelerated corrosion in industrial steam and power plants [C]// Engineering & Papermakers Conference. Nashville, Tennessee, 1997.
[4] KASTNER W, ERVE M, HENZEL N, et al. Calculation code for erosion corrosion induced wall thinning in piping systems [J]. Nuclear Engineering and Design, 1990, 119 (2-3):431-438.
[5] ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy [J]. Materials Today, 2009, 12(11): 12-19.
[6] SYDBERGER T, LOTZ U. Relation between mass transfer and corrosion in a turbulent pipe ?ow [J]. Journal of the Electrochemical Society, 1982,129(2): 276-283.
[7] LOTZ U, POSTLETHWAITE J. Erosion-corrosion in disturbed two phase liquid particle ?ow [J]. Corrosion science, 1990, 30: 95-106.
[8] POULSON B. Complexities in predicting erosion corrosion [J]. Wear, 1999, 233-235:497-504.
[9] KEATING A, NESIC S. Prediction of two-phase erosion-corrosion in bends [C]// International Conference on CFD in the mineral and process industries. Melbourne, 1999.
[10] CHEN X, MCLAURY B S, SHIRAZI S A. A comprehensive procedure to estimate erosion in elbows for gas/liquid/sand multiphase ?ow [J]. Journal of Energy Resources Technology, 2006, 128 (1): 70-78.
[11] PIETRALIK J M, SCHEFSKI C S. Flow and mass transfer in bends under ?ow-accelerated corrosion wall thinning conditions [C]// 17th International Conference on Nuclear Engineering. Brussels, Belgium, 2009.
[12] LARISSA Z, KENDRA N, ROWAT A C. Understanding diffusion theory and Fick’s law through food and cooking [J]. Advances in Physiology Education, 2015, 39(3): 192-197.
[13] OPHEK L, NIR O, SEGAL H, et al. Temperature-dependent boron permeability through reverse-osmosis membranes: implications for full-scale simulations [J]. Desalination & Water Treatment, 2017, 68: 23-31.
[14] ZHANG P, YUAN S. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids [J]. Geochimica et Cosmochimica Acta, 2017, 218:153-166.
[15] GEBURTIG D, PREUSTER P, BOSMANN A, et al. Chemical utilization of hydrogen from fluctuating energy sources-Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems [J]. International Journal of Hydrogen Energy, 2016, 41(2): 1010-1017.
[16] Atomic Energy Society of Japan. Handbook of Water Chemistry of Nuclear Reactor System [M]. Tokyo, Corona Publishing, 2000.
[17] WILLEY J D, POWELL J P, AVERY G B, et al. Use of experimentally determined Henry’s Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters [J]. Chemosphere, 2017, 182: 426-432.
[18] ESHTKAR K, NEMATOLLAHI M, ERFANINIA A. CFX study of flow accelerated corrosion via mass transfer coefficient calculation in a double elbow [J]. International Journal of Hydrogen Energy. 2016, 41(17):7036-7046.
[19] HAN F, LIU Z C, LIU W, et al. On flow structures associated with large wall mass transfer coefficients in orifice flows [J]. International Journal of Heat and Mass Transfer. 2016, 102:1-9.
[20] ZENG L, ZHANG G A, GUO X P, et al. Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow [J]. Corrosion Science. 2015, 90:202-215.
[21] FUJISAWA N, UCHIYAMA K, YAMAGATA T. Mass transfer measurements on periodic roughness in a circular pipe and downstream of orifice [J]. International Journal of Heat and Mass Transfer. 2017, 105:316-325.
[22] TAGG D J, PATRICK M A, WRAGG A A. Heat and Mass Transfer Downstream of Abrupt Nozzle Expansions in Turbulent Flow Trans [J]. Transactions of the Institution of Chemical Engineer, 1979, 57(12):176-181.
[23] FAKOUR M, VAHABZADEH A, GANJI D D, et al. Analytical study of micro-polar fluid flow and heat transfer in a channel with permeable walls [J]. Journal of Molecular Liquids, 2015, 204: 198-204.
[24] Dooley R B. Flow-accelerated corrosion in fossil and combined cycle/HRSG plants [J]. Power Plant Chemistry, 2008, 10(2).
[25] AHMED W H, BELLO M M, NAKLA M E, et al. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions [J]. Nuclear Engineering and Design, 2012, 252: 52-67.

相似文献/References:

[1]测试.测试[J].热力发电,2013,(03):1.
  测试[J].Thermal Power Generation,2013,(预出版):1.
[2]陈海平,谢 天,杨博然,等. 火电厂烟气水分及余热陶瓷膜法回收实验[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201803032]
 CHEN Haiping,XIE Tian,YANG Boran,et al. Ceramic membrane method for water and waste heat recovery from flue gas of thermal power plant[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201803032]
[3]肖俊峰,李晓丰,胡孟起,等. 燃气轮机污染物排放影响因素相关性分析[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201804088]
 XIAO Junfeng,LI Xiaofeng,HU Mengqi,et al. Research on the correlation between influencing factors and pollutant emission of a heavy-duty gas turbine[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201804088]
[4]汪淑军,姚 伟,张喜来,等. 准东煤一维炉燃烧结渣特性试验研究[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201804121]
 WANG Shujun,YAO Wei,ZHANG Xilai,et al. Experimental study on slagging characteristics of zhundong coal burning on a one dimensional furnace [J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201804121]
[5]张贵泉,刘永兵,文慧峰,等. Incoloy800H合金晶间腐蚀敏化条件研究[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201805112]
 ZHANG Guiquan,LIU Yongbing,WEN Huifeng,et al. Research on intergranular corrosion sensitization conditions for Incoloy800H alloy[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201805112]
[6]杨 琛,薛 铮,方彦军,等. 塔式太阳能镜场三轴支撑定日镜控制装置[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201803062]
 YANG Chen,XUE Zheng,FANG Yanjun,et al. Tower solar mirror field of the three-axis support heliostat control device[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201803062]
[7]张雪慧,魏 博,马 瑞,等. 准东地区粉煤灰改性做高碱煤缓焦剂的熔融性能评估[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201805097]
 Zhang Xuehui,Wei Bo,Ma Rui,et al. The Evaluation of Fusion Characteristics on the High Alkali Coal Slagging Inhibitor by Modified Fly Ash from Zhundong Area[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201805097]
[8]余兴刚,李 旭,蒋北华,等. 汽轮机变工况模型的简便建立方法及应用[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201806123]
 YU Xinggang,LI Xu,JIANG Beihua,et al. A simple method to construct variable condition model for steam turbine and its application[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201806123]
[9]邱振波,张立杰,胡伟,等.基于信息通信技术的燃气轮机远程预警技术研究及应用[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201804129]
 QIU Zhenbo,ZHAGN Lijie,HU Wei,et al. Research and application of gas turbine remote early warning technology based on ICT[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201804129]
[10]王万召,铁 玮,谭 文.直接蒸汽发电槽式太阳能集热器蒸汽温度自抗扰控制[J].热力发电,2018,(预出版):1.[doi:10.19666j.rlfd.201806120]
 WANG Wanzhao,TIE Wei,TAN Wen.Active Disturbance Rejection Control System of Steam Temperature of Direct Steam Generation Trough Solar Collector[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666j.rlfd.201806120]

备注/Memo

备注/Memo:
 林彤(1995—),女,研究生,主要研究方向为流动加速腐蚀,220160389@seu.edu.cn。
更新日期/Last Update: 2018-09-26