[1]王万召,铁 玮,谭 文.直接蒸汽发电槽式太阳能集热器蒸汽温度自抗扰控制[J].热力发电,2018,(预出版):1-6.[doi:10.19666j.rlfd.201806120]
 WANG Wanzhao,TIE Wei,TAN Wen.Active Disturbance Rejection Control System of Steam Temperature of Direct Steam Generation Trough Solar Collector[J].Thermal Power Generation,2018,(预出版):1-6.[doi:10.19666j.rlfd.201806120]
点击复制

直接蒸汽发电槽式太阳能集热器蒸汽温度自抗扰控制()
分享到:

《热力发电》[ISSN:1000-9035/CN:22-1262/O4]

卷:
期数:
2018年预出版
页码:
1-6
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Active Disturbance Rejection Control System of Steam Temperature of Direct Steam Generation Trough Solar Collector
作者:
 王万召1铁 玮2谭 文3
1.河南城建学院,河南 平顶山 467036;
2.河南质量工程职业学院,河南 平顶山 467099;
3.华北电力大学控制与计算机工程学院,北京 102206
Author(s):
 WANG Wanzhao1 TIE Wei2 TAN Wen3
1. Henan University of Urban Construction, Pingdingshan 467036, China;
2. Henan Quality Engineering Vocational College, Pingdingshan 467099, China;
3. School of Control and Computer Engineering, North China University of Electric Power, Beijing 102206, China
关键词:
 自抗扰控制DSG槽式集热器蒸汽温度大滞后扩张状态观测器调节品质
分类号:
TP273, TK514
DOI:
10.19666j.rlfd.201806120
文献标志码:
A
摘要:
 直接蒸汽发电(DSG)槽式太阳能集热器蒸汽温度具有大滞后、非线性、动态特性随工况变化明显及无法精确建模等特点,常规的PID控制方案难以取得满意的控制效果。本文基于自抗扰控制思想,通过引入虚拟控制量,对DSG槽式太阳能集热器蒸汽温度去除纯滞后环节后的剩余对象设计自抗扰控制器,获得与其相应的虚拟控制量。然后利用跟踪微分器由虚拟控制量推测得到实际控制量,从而控制减温水流量调节蒸汽温度。实验仿真结果表明,本文提出的自抗扰控制方案能够在不同蒸汽压力工况下,克服DSG槽式太阳能集热器蒸汽温度对象动态特性变化和大滞后,对蒸汽温度指令信号阶跃实现快速准确跟踪,全程无超调,调节品质明显优于传统PID控制方案。

参考文献/References:

 [1] 王志峰. 太阳能热发电站设计[M]. 北京 化学工业出版社, 2014 26-33.
WANG Zhifeng. Solar thermal power station design[M]. Beijing Chemical Industry Press, 2014 26-33(in Chinese).
[2] 韩柳,庄博,吴耀武, 等. 风光水火联合运行电网的电源出力特性及相关性研究[J]. 电力系统保护与控制, 2016, 44(19) 91-98.
HAN Liu, ZHUANG Bo, WU Yaowu, et al. Power source’s output characteristics and relevance in wind-solar-hydro-thermal power system[J]. Power System Protection and Control, 2016, 44(19) 91-98.
[3] 张耀明, 邹宁宇. 太阳能热发电技术[M]. 北京 化学工业出版社, 2016 28-31.
ZHANG Yaoming, ZOU Ningyu. Solar thermal power generation technology[M]. Beijing Chemical Industry Press, 2016 28-31( in Chinese).
[4] EDUARDO F C. 太阳能发电系统控制技术[M]. 北京机械工业出版社, 2014 50-57.
EDUARDO F C. Solar power system control tech- nology[M]. Beijing Mechanical Industry Press, 2014 50-57(in Chinese).
[5] YAN Q, HU E, YANG Y P, et al.Dynamic modeling and simulation of a solar direct steam-generating system[J]. International Journal of Energy Research, 2010, 34(15) 1341-1355.
[6] 梁征, 孙利霞, 由长福. DSG太阳能槽式集热器动态特性[J]. 太阳能学报, 2009, 30(12) 1640-1645.
LIANG Zhen, SUN Lixia, YOU Changfu. Dynamic characteristics of DSG solar trough collectors[J].Acta Energiae Solaris Sinica, 2009, 30(12) 1640-1645.
[7] 曲航, 赵军, 于晓. 抛物槽式太阳能热发电系统的模拟分析[J]. 中国电机工程学报, 2008, 28(11) 87-93.
QU Hang, ZHAO Jun, YU Xiao. Simulation of parabolic trough solar power generation system for typical Chinese sites[J]. Proceedings of the CSEE, 2008, 28(11) 87-93.
[8] VALENZUELA L, ZARZA E, BERENGUEL M, et al. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode[J]. Solar Energy, 2006, 80(1) 1-17.
[9] 郭苏, 刘德有, 张耀明, 等. 循环模式DSG槽式太阳能集热器出口蒸汽温度控制策略研究[J]. 中国电机工程学报, 2012, 32(20) 62-68.
GUO Su, LIU Deyou, ZHANG Yaoming, et al. Research on control strategy of outlet steam temperature for DSG in parabolic troughs solar power under recirculation operation mode[J]. Proceedings of the CSEE, 2012, 32(20) 62-68.
[10] 田贵宾. DSG槽式太阳能集热系统建模及预测控制研究[D]. 北京 北京交通大学, 2016 49-54.
TIAN Guibin.Research on modeling of DSG trough solar collector system and predictive control[D]. Beijing Beijing Jiaotong University, 2016 49-54 (in Chinese).
[11] 潘小弟, 纪云锋, 王桂荣. 注入模式下DSG系统反馈线性化串级控制器设计[J]. 微计算机信息, 2011, 27(1) 28-30.
PAN Xiaodi, JI Yunfeng, WANG Guirong. Feedback linearization cascade controller design of DSG system under injection mode[J]. Micro Computer Information, 2011, 27(1) 28-30(in Chinese).
[12] 张先勇, 舒杰, 吴昌宏, 等. 槽式太阳能热发电中的控制技术及研究进展[J]. 华东电力, 2008, 36(1) 135-138.
ZHANG Xianyong, SHU Jie, WU Changhong, et al. Control technology and its research development for solar parabolic trough power generation[J]. East China Electric Power, 2008, 36(1) 135-138.
[13] 韩京清. 自抗扰控制技术[M]. 北京:国防工业出版社, 2009 243-263.
HAN Jingqing. Active disturbance rejection control technique[M]. Beijing National Defense Industry Press, 2009243-263(in Chinese).
[14] 黄焕袍, 武利强, 韩京清, 等. 火电单元机组系统的自抗扰控制方案研究[J]. 中国电机工程学报, 2004, 24(10) 168-173.
HUANG Huanpao, WU Liqiang, HAN Jingqing, et al. A study of active disturbances rejection control on unit coordinated control system in thermal power plants[J]. Proceedings of the CSEE, 2004, 24(10) 168-173.
[15] 陈红, 曾健, 王广军. 蒸汽发生器的自抗扰控[J]. 中国电机工程学报, 2010, 30(32) 103-107.
CHEN Hong, ZENG Jian, WANG Guangjun. Steam generator water level control based on active disturbances rejection control[J]. Proceedings of the CSEE, 2010, 30(32) 103-107.
[16] 王万召, 谭文. 循环流化床锅炉主汽温自抗扰控制系统[J]. 动力工程学报, 2017, 37(12) 977-982.
WANG Wanzhao, TAN Wen. Active disturbance rejection control system of main steam temperature of circulating fluidized bed boiler[J]. Journal of Power Engineering, 2017, 37(12) 977-982.

相似文献/References:

[1]徐春梅,杨 平,蒋式勤,等.锅炉汽包水位自抗扰控制的仿真研究[J].热力发电,2006,(11):0.
[2]测试.测试[J].热力发电,2013,(03):1.
  测试[J].Thermal Power Generation,2013,(预出版):1.
[3]姜家国,郭为民,刘延泉,等.选择性催化还原脱硝系统Smith预估自抗扰控制[J].热力发电,2016,(01):54.
 JIANG Jiaguo,GUO Weimin,LIU Yanquan,et al.Auto disturbance rejection control based on Smith predictor in SCR denitrification system[J].Thermal Power Generation,2016,(预出版):54.
[4]陈海平,谢 天,杨博然,等. 火电厂烟气水分及余热陶瓷膜法回收实验[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201803032]
 CHEN Haiping,XIE Tian,YANG Boran,et al. Ceramic membrane method for water and waste heat recovery from flue gas of thermal power plant[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201803032]
[5]肖俊峰,李晓丰,胡孟起,等. 燃气轮机污染物排放影响因素相关性分析[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201804088]
 XIAO Junfeng,LI Xiaofeng,HU Mengqi,et al. Research on the correlation between influencing factors and pollutant emission of a heavy-duty gas turbine[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201804088]
[6]汪淑军,姚 伟,张喜来,等. 准东煤一维炉燃烧结渣特性试验研究[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201804121]
 WANG Shujun,YAO Wei,ZHANG Xilai,et al. Experimental study on slagging characteristics of zhundong coal burning on a one dimensional furnace [J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201804121]
[7]张贵泉,刘永兵,文慧峰,等. Incoloy800H合金晶间腐蚀敏化条件研究[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201805112]
 ZHANG Guiquan,LIU Yongbing,WEN Huifeng,et al. Research on intergranular corrosion sensitization conditions for Incoloy800H alloy[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201805112]
[8]杨 琛,薛 铮,方彦军,等. 塔式太阳能镜场三轴支撑定日镜控制装置[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201803062]
 YANG Chen,XUE Zheng,FANG Yanjun,et al. Tower solar mirror field of the three-axis support heliostat control device[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201803062]
[9]张雪慧,魏 博,马 瑞,等. 准东地区粉煤灰改性做高碱煤缓焦剂的熔融性能评估[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201805097]
 Zhang Xuehui,Wei Bo,Ma Rui,et al. The Evaluation of Fusion Characteristics on the High Alkali Coal Slagging Inhibitor by Modified Fly Ash from Zhundong Area[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201805097]
[10]余兴刚,李 旭,蒋北华,等. 汽轮机变工况模型的简便建立方法及应用[J].热力发电,2018,(预出版):1.[doi:10.19666/j.rlfd.201806123]
 YU Xinggang,LI Xu,JIANG Beihua,et al. A simple method to construct variable condition model for steam turbine and its application[J].Thermal Power Generation,2018,(预出版):1.[doi:10.19666/j.rlfd.201806123]

备注/Memo

备注/Memo:
 王万召(1972—),男,副教授,博士,主要研究方向为智能控制及热工自动控制,30040706@hncj.edu.cn。
更新日期/Last Update: 2018-09-05